trong mặtphẳng Oxy cho đường thẳng \(\Delta\) x-y=0. Đường tròn (C) có bán kính R=\(\sqrt{10}\) cắt \(\Delta\)tại 2 điểm A,B sao cho AB=4\(\sqrt{2}\). tiếp tuyến của (C) tại A, B cắt nhau tại một điểm thuộc tia Oy. Viết phương trình đường tròn (C)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
nên MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại K
Xét ΔOAM vuông tại A có AK là đường cao
nên \(OK\cdot OM=OA^2=R^2\)
Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{MAO}=90^0\)
\(\widehat{KAI}+\widehat{OIA}=90^0\)(ΔAKI vuông tại K)
mà \(\widehat{OAI}=\widehat{OIA}\)
nên \(\widehat{MAI}=\widehat{KAI}\)
=>AI là phân giác của góc MAB
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB
=>MK là phân giác của góc AMB
Xét ΔMAB có
MK,AI là các đường phân giác
MK cắt AI tại I
Do đó: I là tâm đường tròn nội tiếp ΔMAB
2: góc OME+góc OAE=180 độ
=>OMEA nội tiếp
=>góc AOE=góc AME=góc OMB