- Cho tam giác MNQ có 3 góc nhọn.Vẽ các đường cao NE,QF. a)CM: Tam giác MNE đồng dạng với tam giác MQF b)CM:ME.NQ=EF.MN c) Gọi I,K lần lượt là trung điểm của NQ và EF.CM:IK vuông góc với EF Các bạn giúp mik với nha(chỉ cần làm mỗi câu c thôi). <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMEN vuông tại E và ΔMFQ vuông tại F có
\(\widehat{FMQ}\) chung
Do đó: ΔMEN\(\sim\)ΔMFQ
b: Ta có: ΔMEN\(\sim\)ΔMFQ
nên \(\dfrac{ME}{MF}=\dfrac{MN}{MQ}\)
hay \(\dfrac{ME}{MN}=\dfrac{MF}{MQ}\)
Xét ΔMEF và ΔMNQ có
\(\dfrac{ME}{MN}=\dfrac{MF}{MQ}\)
\(\widehat{FME}\) chung
Do đó: ΔMEF\(\sim\)ΔMNQ
a: Xét ΔMNE có \(EM^2+EN^2=MN^2\)
nên ΔEMN vuông tại E
b: Xét ΔEMN vuông tại E có EG là đường cao
nên \(\left\{{}\begin{matrix}EG\cdot MN=EM\cdot EN\\NG\cdot NM=NE^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}EG\cdot15=12\cdot9=108\\NG\cdot15=12^2=144\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}EG=\dfrac{108}{15}=7,2\left(cm\right)\\NG=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
c: ΔGNE vuông tại G
mà GH là trung tuyến
nên \(GH=\dfrac{NE}{2}=\dfrac{12}{2}=6\left(cm\right)\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a: Xét ΔNKH vuông tại K và ΔNMQ vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔNKH~ΔNMQ
b: Xét ΔQMN có
H là trung điểm của QN
HK//QM
Do đó: K là trung điểm của MN
Xét ΔQMN có
H là trung điểm của QN
HE//MN
Do đó: E là trung điểm của QM
Xét tứ giác MKHE có \(\widehat{MKH}=\widehat{MEH}=\widehat{EMK}=90^0\)
nên MKHE là hình chữ nhật
=>HK=EM và MK=EH
ta có: HK=EM
EM=EQ
Do đó: HK=EM=EQ
Ta có: MK=EH
MK=KN
Do đó: EH=MK=KN
Xét ΔEMK vuông tại M và ΔHKN vuông tại K có
EM=HK
MK=KN
Do đó: ΔEMK=ΔHKN
=>ΔEMK~ΔHKN
a: Xét ΔHNM vuông tại H và ΔMND vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMND
b: ND=căn 3^2+4^2=5cm
MH=3*4/5=2,4cm
NH=3^2/5=1,8cm
c: ME là phân giác
=>NE/DE=MN/MD=3/4
=>NE/3=DE/4
=>S MNE=3/4*S MDE
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
Do đó: ΔCDA\(\sim\)ΔCEB
b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHEA\(\sim\)ΔHDB
Suy ra: HE/HD=HA/HB
hay \(HE\cdot HB=HD\cdot HA\)