K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

mọi người lamf giúp mình vs ak

 

2 tháng 5 2022

mình đang cần gấp mọi ng giúp mình với ạ

 

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

b: góc MBD=góc ECN

=>góc KBC=góc KCB

=>K nằm trên trung trực của BC

=>A,H,K thẳng hàng

6 tháng 5 2021

a, Do tam giác ABC cân tại A(gt) => AB=AC

Do AH\(\perp\)BC(gt)=> \(\widehat{AHB}=\widehat{AHC}=90^o\)

Xét tam giác ABH và tam giác ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^o\left(cmt\right)\)

AB=AC(cmt)

AH chung 

=> tam giác ABH=tam giác ACH(ch-cgv)

b, Do tam giác ABH=tam giác ACH(câu a)

\(\)=> HB=HC (2 cạnh tương ứng)

Do tam giác ABC cân tại A(gt)=> \(\widehat{ABC}=\widehat{ABC}\)

Ta có: \(\widehat{ABC}+\widehat{ABM}=180^o\)(kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^o\)(kề bù)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét tam giác ABM và tam giác ACN có:

AB=AC(câu a)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

=>tam giác ABM và tam giác ACN(c.g.c)

\(\Rightarrow AM=AN\) (2 cạnh tương ứng)

\(\Rightarrow\Delta AMN\) cân tại A

1 tháng 7 2021

giúp mình với

 

Mình xin sửa lại đề một chút

Bài 3: Cho ΔABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN. Vẽ BD⊥AM tại D và CE⊥AN tại E.

a) Cm ΔAMN cân 

b) Cm DB=CE

Bài làm:

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

b) Xét ΔMBD vuông tại D và ΔNCE vuông tại E có 

BM=CN(gt)

\(\widehat{M}=\widehat{N}\)(ΔABM=ΔACN)

Do đó: ΔMBD=ΔNCE(Cạnh huyền-góc nhọn)

Suy ra: DB=EC(Hai cạnh tương ứng)

a: XétΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK