K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

a/ Đọc đề chẳng hiểu bạn viết gì luôn? Chứng minh các tam giác SAB và SBC vuông hay chứng minh mặt phẳng (SAB) vuông góc mặt phẳng (SBC)?

b/ Qua B kẻ đường thẳng song song AC cắt AD kéo dài tại E

\(\Rightarrow EA=BC=a\)

\(AC//BE\Rightarrow AC//\left(SBE\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)

Từ A kẻ \(AH\perp EB\) ; từ A kẻ \(AK\perp SH\Rightarrow AK\perp\left(SBE\right)\)

\(\Rightarrow AK=d\left(A;\left(SBE\right)\right)\)

\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AB^2}=\frac{2}{a^2}\Rightarrow AH=\frac{a\sqrt{2}}{2}\)

\(\frac{1}{AK^2}=\frac{1}{SA^2}+\frac{1}{AH^2}\Rightarrow AK=\frac{SA.AH}{\sqrt{SA^2+AH^2}}=\frac{a\sqrt{3}}{3}\)

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

b: BC vuông góc AB

BC vuông góc SA
=>BC vuông góc (SAB)

=>BC vuông góc AK

mà AK vuông góc SB

nên AK vuông góc (SBC)

 

NV
29 tháng 4 2021

Bạn kiểm tra lại đề,

1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)

2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)

29 tháng 4 2021

Nguyễn Việt Lâm

e xin loi a

ABCD là hình thang vuông tại A và D

còn đoạn sau khoảng cách giữa 2 đt SC và AC thì e kh biet no sai o đau

anh giup em vs ah

30 tháng 5 2022

Do SA ⊥ (ABCD) ⇒ \(\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\\SA\perp BC\end{matrix}\right.\)

Mà BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC và BC ⊥ AH

Do BC ⊥ AH và AH ⊥ SC ⇒ AH ⊥ (SBC) ⇒ AH ⊥ KH ⇒ \(\widehat{AHK}=90^0\)

ΔSAB và ΔSAC vuông tại A

Mà AH và AK lần lượt là đường cao của ΔSAB và ΔSAC

⇒ \(\left\{{}\begin{matrix}SA^2=SK.SB\\SA^2=SH.SC\end{matrix}\right.\)

⇒ SK . SB = SH . SC

⇒ \(\dfrac{SK}{SH}=\dfrac{SC}{SB}\) ⇒ ΔSKH \(\sim\) ΔSCB ⇒ \(\widehat{SKH}=\widehat{SCB}=90^0\)

⇒ HK ⊥ SB

Mà AK⊥ SB

⇒ ((SAB),(SCB)) = (AK,AH) = \(\widehat{KAH}\) = 450 (đây là góc nhọn, vì \(\widehat{AHK}=90^0\))

⇒ ΔHAK vuông cân tại H ⇒ AK = \(\sqrt{2}AH\)

Ta có : \(\dfrac{S_{SAC}}{S_{SAB}}=\dfrac{\dfrac{1}{2}.AH.SC}{\dfrac{1}{2}AK.SB}=\dfrac{\dfrac{1}{2}.SA.AC}{\dfrac{1}{2}.SA.AB}\)

⇒ \(\dfrac{AH.SC}{AK.SB}=\dfrac{SA.AC}{SA.AB}\)

⇒ \(\dfrac{1}{\sqrt{2}}\) . \(\dfrac{SC}{SB}\) = \(\dfrac{AC}{AB}\). Mà AC = a và AB = 2a

⇒ \(\dfrac{1}{\sqrt{2}}\)\(\dfrac{SC}{SB}\) = \(\dfrac{1}{2}\) ⇒ \(\dfrac{SC^2}{SB^2}\) = \(\dfrac{1}{2}\) . Mà SB2 - SC2 = BC2 = 3a2

⇒ \(\left\{{}\begin{matrix}SC^2=3a^2\\SB^2=6a^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}SB=a\sqrt{6}\\SC=a\sqrt{3}\end{matrix}\right.\) ⇒ SA = a\(\sqrt{2}\)

Từ đó ta tính được SH = \(\dfrac{2a\sqrt{3}}{3}\) và SK = \(\dfrac{a\sqrt{6}}{3}\)

Gọi M là trung điểm của SB thì ta có CM // HK (cùng vuông góc với SB)

Khoảng cách từ HK đến AC bằng khoảng cách từ HK đến (AMC)

 

30 tháng 5 2022

bn ơi cho mình hỏi sao gọi M là tđ sb thì suy ra cm ss vs hk dc nhỉ

 

NV
21 tháng 4 2021

Gọi G là trọng tâm SBC và M là trung điểm BC

\(\Rightarrow GM=\dfrac{1}{3}SM\Rightarrow d\left(G;\left(ABCD\right)\right)=\dfrac{1}{3}d\left(S;\left(ABCD\right)\right)=\dfrac{1}{3}SA=\dfrac{a}{3}\)

21 tháng 4 2021

em cảm ơn thầy

11 tháng 4 2022

 thôi ngay trò spam nếu ko muốn bay acc

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
3 tháng 6 2017

3 tháng 5 2018

8 tháng 11 2017

Chọn A