Bài 1: Tìm nghiệm của:
a) A(x)= 2x-6
b)B(x)=52-10x
c)C(x)=33-3x
d)D(x)=x4+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: A=(x-1)^2>=0
Dấu = xảy ra khi x=1
5: B=-(x^2+6x+10)
=-(x^2+6x+9+1)
=-(x+3)^2-1<=-1
Dấu = xảy ra khi x=-3
2: B=x^2+4x+4-9
=(x+2)^2-9>=-9
Dấu = xảy ra khi x=-2
6: =-(x^2-5x-3)
=-(x^2-5x+25/4-37/4)
=-(x-5/2)^2+37/4<=37/4
Dấu = xảy ra khi x=5/2
3: =x^2+x+1/4-1/4
=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2
7: =4x^2+4x+1-2
=(2x+1)^2-2>=-2
Dấu = xảy ra khi x=-1/2
Bài 2:
a) (x+7)-13=25
(x+7) - 13 = 25
(x+7) - 13 + 13 = 25 + 13
x + 7 = 38
(x + 7) - 7 = 38 - 7
x = 31
Vậy, giá trị của x là 31.
b) ( 33-5(x-4)=13
33 - 5(x-4) = 13
33 - 5x + 20 = 13
-5x + 53 = 13
-5x = 13 - 53
-5x = -40
(-5x)/-5 = (-40)/-5
x = 8
Vậy, giá trị của x là 8.
C( x+6=3x
x + 6 = 3x
x + 6 - 6 = 3x - 6
x = 3x - 6
x - 3x = -6
(-2x) = -6
(-2x)/-2 = (-6)/-2
x = 3
Vậy, giá trị của x là 3.
d) ( 5x+3=2x+12
5x + 3 = 2x + 12
5x - 2x = 12 - 3
3x = 9
(3x)/3 = 9/3
x = 3
Vậy, giá trị của x là 3.
`#3107.101107`
1.
a)
`34046 = 30000 + 4000 + 40 + 6`
b)
201012 = 200000 + 1000 + 12`
c)
\(\overline{a2b}=a\times100+20+b\)
d)
\(\overline{abc1}=a\times1000+b\times100+c\times10+1\)
2.
a)
`(x + 7) - 13 = 25`
`=> x + 7 = 25 - 13`
`=> x + 7 = 12`
`=> x = 12 - 7`
`=> x = 5`
Vậy, `x = 5`
b)
`33 - 5(x - 4) = 13`
`=> 5(x - 4) = 33 - 13`
`=> 5(x - 4) = 20`
`=> x - 4 = 20 \div 5`
`=> x - 4 = 4`
`=> x = 4 + 4`
`=> x = 8`
Vậy, `x = 8`
c)
`x + 6 = 3x`
`=> x + 6 - 3x = 0`
`=> (x - 3x) + 6 = 0`
`=> -2x + 6 = 0`
`=> -2x = -6`
`=> 2x = 6`
`=> x = 6 \div 2`
`=> x = 3`
Vậy, `x = 3`
d)
`5x + 3 = 2x + 12`
`=> 5x - 2x = 12 - 3`
`=> 3x = 9`
`=> x = 9 \div 3`
`=> x = 3`
Vậy, `x = 3.`
____
`@` Quy tắc chuyển vế, đổi dấu:
- Khi chuyển vế 1 số hạng vế này qua vế kia, ta đổi dấu cho số hạng đó. Nếu số hạng đó mang dấu dương (+) khi chuyển vế đổi thành dấu âm (-), ngược lại, nếu số hạng đó mang dấu âm (-) khi chuyển vế đối thành dấu dương (+).
\(#V3L6\)
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
Bài 1:
a) Ta có: \(x\left(x^2-4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2;-2\right\}\)
b) Ta có: \(\left(2x-3\right)+\left(-3x\right)-\left(x-5\right)=40\)
\(\Leftrightarrow2x-3-3x-x+5=40\)
\(\Leftrightarrow-2x+2=40\)
\(\Leftrightarrow-2x=38\)
hay x=-19
Vậy: x=-19
Bài 2:
a) Ta có: \(-45\cdot12+34\cdot\left(-45\right)-45\cdot54\)
\(=-45\cdot\left(12+34+54\right)\)
\(=-45\cdot100\)
\(=-4500\)
b) Ta có: \(43\cdot\left(57-33\right)+33\cdot\left(43-57\right)\)
\(=43\cdot57-43\cdot33+43\cdot33-33\cdot57\)
\(=43\cdot57-33\cdot57\)
\(=57\cdot\left(43-33\right)\)
\(=57\cdot10=570\)
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
Bài 1:
\(a,=6x^2+6x\\ b,=15x^3-10x^2+5x\\ c,=6x^3+12x^2\\ d,=15x^4+20x^3-5x^2\\ e,=2x^2+3x-2x-3=2x^2+x-3\\ f,=3x^2-5x+6x-10=3x^2+x-10\)
Bài 2:
\(a,\Leftrightarrow3x^2+3x-3x^2=6\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow6x^2+3x-6x^2+9x-2x-3=10\\ \Leftrightarrow10x=13\Leftrightarrow x=\dfrac{13}{10}\)
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
a) A(x) = 2x - 6
Đa thức có nghiệm <=> 2x - 6 = 0
<=> 2x = 6
<=> x = 3
Vậy nghiệm của đa thức = 3
b) B(x) = 52 -10x
Đa thức có nghiệm <=> 52 - 10x = 0
<=> 25 - 10x = 0
<=> 10x = 25
<=> x = 5/2
Vậy nghiệm của đa thức = 5/2
c) C(x) = 33 - 3x
Đa thức có nghiệm <=> 33 - 3x = 0
<=> 27 - 3x = 0
<=> 27 = 3x
<=> x = 9
Vậy nghiệm của đa thức = 9
d) D(x) = x4 + 1
Ta có \(x^4\ge0\forall x\)
1 > 0
=> x4 + 1 > 0 với mọi x
=> Vô nghiệm