K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

(x+y)5-x5-y5=0

=>x5+y5+5x4y+10x3y2+10x2y3+5xy4-x5=0

=>5x4y+10x3y2+10x2y3+5xy4=0

=>5xy(x3+y3+2x2y+2xy2)=0

=>x3+y2+2x2y+2xy2=0

=>(x+y)(x2-xy+y2)+2xy(x+y)=0

=>(x+y)(x2-xy+y2+2xy)=0

=>(x+y)(x2+xy+y2)=0

=>x+y=0 hoặc x2+y2+xy=0

Vậy x+y=0(đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:

Ta có:

$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3=(-z)^3-3xy(-z)+z^3$
$=(-z)^3+3xyz+z^3=3xyz$
Khi đó:

$2(x^5+y^5+z^5)=2[(x^3+y^3+z^3)(x^2+y^2+z^2)-(x^3y^2+x^3z^2+y^3x^2+y^3z^2+z^3x^2+z^3y^2)]$

$=2[3xyz(x^2+y^2+z^2)-x^2y^2(x+y)-y^2z^2(y+z)-z^2x^2(z+x)]$

$=6xyz(x^2+y^2+z^2)-2[x^2y^2(-z)+y^2z^2(-x)+z^2x^2(-y)]$

$=6xyz(x^2+y^2+z^2)+2(x^2y^2z+y^2z^2x+x^2x^2y)$

$=6xyz(x^2+y^2+z^2)+2xyz(xy+yz+xz)$

$=6xyz(x^2+y^2+z^2)+xyz[(x+y+z)^2-(x^2+y^2+z^2)]$

$=6xyz(x^2+y^2+z^2)+xyz[0-(x^2+y^2+z^2)]$

$=6xyz(x^2+y^2+z^2)-xyz(x^2+y^2+z^2)=5xyz(x^2+y^2+z^2)$

Ta có đpcm.

17 tháng 6 2017

Ta có :

\(\left(x+y\right)^5-x^5-y^5=0\)

\(\Leftrightarrow\left(x+y\right)^5-\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^4-x^4+x^3y-x^2y^2+xy^3-y^4\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left(5x^3+5x^2y^2+5xy^3\right)=0\)

\(\Leftrightarrow5xy\left(x+y\right)\left(x^2+xy+y^2\right)=0\left(1\right)\)

\(x,y\ne0,x^2+xy+y^2=\left(x+y\right)^2+\dfrac{3y^2}{4}\ne0\)

Nên \(\left(1\right)=>x+y=0\)

...........

17 tháng 6 2017

\((x+y)^5-x^5-y^5=0 \\\Leftrightarrow x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5-x^5-y^5=0 \\\Leftrightarrow (5x^4y+5xy^4)+(10x^3y^2+10x^2y^3)=0 \\\Leftrightarrow 5xy(x^3+y^3)+10x^2y^2(x+y)=0 \\\Leftrightarrow 5xy(x+y)(x^2-xy+y^2)+10x^2y^2(x+y)=0 \\\Leftrightarrow 5xy(x+y)(x^2-xy+y^2+2xy)=0 \\\Leftrightarrow 5xy(x+y)(x^2+xy+y^2)=0 \\\Leftrightarrow \left[\begin{matrix}5xy=0\Rightarrow x=0 \ or \ y=0\\ x+y=0\\ x^2+xy+y^2=0\end{matrix}\right.\)

\(x,y\neq 0\)\(x^2+xy+y^2=x^2+2.x.\dfrac{y}{2}+\dfrac{y^2}{4}+\dfrac{3y^2}{4}=(x+\dfrac{y}{2})^2+\dfrac{3y^2}{4}>0\)

\(\Rightarrow x+y=0\)

21 tháng 11 2017

Nhẩm nghiệm ta thấy: a+b+c=3 \(\Rightarrow\)a=b=c=1    (1)

Áp dụng bất đẳng thức AM-GM, ta có:

\(x^5+y^5+z^5+\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\ge6\sqrt[6]{\frac{x^5y^5z^5}{xyz}}=6\sqrt[6]{x^4y^4z^4}\)

Hay: \(6\sqrt[6]{x^4y^4z^4}\ge6\)

\(\Leftrightarrow\sqrt[6]{x^4y^4z^4}=1\Leftrightarrow x^4y^4z^4=1\Leftrightarrow xyz=1\)   (2)

Từ (1) và (2) suy ra: x=y=z=1