Giúp em làm bài 3 với bài 5 đi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Leftrightarrow AB=12.5\left(cm\right)\)
\(\Leftrightarrow AC=12.5\sqrt{3}\left(cm\right)\)
Bài 4:
\(28x^3+6x^2+12x+8=0\)
\(\Leftrightarrow28x^3+14x^2-8x^2-4x+16x+8=0\)
\(\Leftrightarrow14x^2\left(2x+1\right)-4x\left(2x+1\right)+8\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(14x^2-4x+8\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2-\dfrac{2}{7}x+\dfrac{4}{7}\right)=0\)
\(\Leftrightarrow2x+1=0\) hay \(\left(x^2-\dfrac{2}{7}x+\dfrac{4}{7}\right)=0\)
\(\Leftrightarrow x=\dfrac{-1}{2}\) hay \(x^2-2.\dfrac{1}{7}x+\dfrac{1}{49}+\dfrac{27}{49}=0\)
\(\Leftrightarrow x=\dfrac{-1}{2}\) hay \(\left(x-\dfrac{1}{7}\right)^2+\dfrac{27}{49}=0\) (vô nghiệm vì \(\left(x-\dfrac{1}{7}\right)^2+\dfrac{27}{49}\ge\dfrac{27}{49}\))
-Vậy \(S=\left\{\dfrac{-1}{2}\right\}\)
Bài 3:
a) AB//CD \(\Rightarrow\widehat{BAM}=\widehat{ACD}\) (so le trong)
\(\widehat{AMB}=\widehat{ADC}=90^0\)
\(\Rightarrow\)△ABM∼△CAD (g-g).
b) △ADC vuông tại D \(\Rightarrow AD^2+DC^2=AC^2\Rightarrow AD^2+AB^2=AC^2\Rightarrow AC=\sqrt{AD^2+AB^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)△ADC có DN phân giác \(\Rightarrow\dfrac{NA}{NC}=\dfrac{DA}{DC}\)
\(\Rightarrow\dfrac{NA}{DA}=\dfrac{NC}{DC}=\dfrac{NA+NC}{DA+DC}=\dfrac{AC}{DA+DC}\)
\(\Rightarrow NC=\dfrac{AC.DC}{DA+DC}=\dfrac{15.12}{9+12}=\dfrac{60}{7}\left(cm\right)\)
△ADC có NK//AD (cùng vuông góc với DC) \(\Rightarrow\dfrac{NK}{AD}=\dfrac{NC}{AC}\)
\(\Rightarrow NK=\dfrac{NC}{AC}.AD=\dfrac{\dfrac{60}{7}}{15}.9=\dfrac{36}{7}\left(cm\right)\)
c) △ABM∼△CAD \(\Rightarrow\dfrac{BM}{AD}=\dfrac{AM}{CD}\Rightarrow\dfrac{BM}{AM}=\dfrac{AD}{CD}\Rightarrow\dfrac{BM}{AM}=\dfrac{AN}{CN}\)
\(\Rightarrow BM.CN=AM.AN\)
△BMC∼△ABC (g-g)\(\Rightarrow\dfrac{BM}{AB}=\dfrac{BC}{AC}\Rightarrow BM=\dfrac{AB.BC}{AC}\Rightarrow\dfrac{1}{BM}=\dfrac{AC}{AB.BC}\Rightarrow\dfrac{1}{BM^2}=\dfrac{AC^2}{AB^2.BC^2}=\dfrac{AB^2+BC^2}{AB^2.BC^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}\)
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM⊥AB
a) \(n_{NaOH}=\dfrac{16}{40}=0,4\left(mol\right)\)
\(n_{CO_2}=\dfrac{4,48}{22,4}=0,2\left(mol\right)\)
Có \(\dfrac{n_{NaOH}}{n_{CO_2}}=\dfrac{0,4}{0,2}=2\) => Tạo ra muối CO32-
PTHH: 2NaOH + CO2 --> Na2CO3 + H2O
________0,4--->0,2-------->0,2
=> mNa2CO3 = 0,2.106 = 21,2 (g)
b) \(n_{CO_2}=\dfrac{1,12}{22,4}=0,05\left(mol\right)\)
nCa(OH)2 = 0,2.0,2 = 0,04 (mol)
PTHH: Ca(OH)2 + CO2 --> CaCO3\(\downarrow\) + H2O
_______0,04--->0,04------->0,04
CaCO3 + CO2 + H2O --> Ca(HCO3)2
_0,01<---0,01-------------->0,01
=> mCaCO3 = (0,04-0,01).100 = 3(g)
=> mCa(HCO3)2 = 0,01.162 = 1,62 (g)
c) \(n_{CO_2}=\dfrac{4,4}{44}=0,1\left(mol\right)\)
nKOH = 0,15.1 = 0,15 (mol)
PTHH: 2KOH + CO2 --> K2CO3 + H2O
______0,15-->0,075---->0,075
K2CO3 + CO2 + H2O --> 2KHCO3
0,025<-0,025------------->0,05
=> mK2CO3 = (0,075-0,025).138 = 6,9 (g)
=> mKHCO3 = 0,05.100 = 5(g)
Gọi số sản phẩm àm 2 ng công nhân được giao là x (x∈N*, sản phẩm)
Thời gian hoàn thành công việc của người thứ nhất là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian hoàn thành công việc của ngươi thứ hai là: \(\dfrac{x}{50}\left(h\right)\)
Vì ng thứ nhất hoàn thành công việc chậm hơn người thứ hai 2 giờ nên ta có PT:
\(\dfrac{x}{40}-\dfrac{x}{50}=2\)
⇔\(50x-40x=4000\)
⇔\(10x=4000\)
⇔\(x=400\)
Vậy số sản phẩm mỗi công nhân được giao là 400 (sản phẩm)
Bài 3:
Số học sinh kém là:
40-8-10-20=2(bạn)
Tỉ số phần trăm giữa số học sinh giỏi so với lớp là:
8:40=20%
Tỉ số phần trăm giữa số học sinh khá so với lớp là:
20:40=50%
Tỉ số phần trăm giữa số học sinh trung bình so với lớp là:
10:40=25%
Tỉ số phần trăm giữa số học sinh yếu so với lớp là:
2:40=5%
Câu 3:
b, PT hoành độ giao điểm (d1) và (d2) là
\(2x+1=\dfrac{1}{3}x\Leftrightarrow\dfrac{5}{3}x=-1\Leftrightarrow x=-\dfrac{3}{5}\Leftrightarrow y=-\dfrac{3}{5}\cdot\dfrac{1}{3}=-\dfrac{1}{5}\\ \Leftrightarrow A\left(-\dfrac{3}{5};-\dfrac{1}{5}\right)\)
Vậy \(A\left(-\dfrac{3}{5};-\dfrac{1}{5}\right)\) là giao điểm của 2 đths
Bài 5:
Gọi chân đường cao từ A đến BC là H
Ta có \(OA=CH=1,1\left(m\right);AH=1,6\left(m\right)\)
Áp dụng HTL: \(BH=\dfrac{AH^2}{CH}=\dfrac{128}{55}\left(m\right)\)
Do đó chiều cao tường là \(BC=BH+HC=\dfrac{377}{110}\approx3,4\left(m\right)\)