K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

tìm giá trị của x để biểu thức A=|3x-3|+||x-4|-3| có giá trị nhỏ nhất,tìm giá trị đó.

11 tháng 4 2020

ta có

\(\hept{\begin{cases}\left|3x-3\right|\ge0\\|\left|x-4\right|-3|\ge0\end{cases}=>\left|3x-3\right|+|\left|x-4|-3\right|\ge0}\)

=> \(Min_A=0khi\hept{\begin{cases}3x-3=0\\\left|x-4\right|-3=0\end{cases}=>x=1}\)

zậy

25 tháng 7 2018

\(x^2\left(2-x^2\right)\)

\(=x^2.2-\left(x^2\right)^2\)

\(=2x^2-\left(x^2\right)^2\)

\(=-x^4+2x^2\)

=> BT ko có GTLN/GTNN

25 tháng 7 2018

Tớ cũng nghĩ vậy nhưng ko biết đúng hay sai đây

27 tháng 12 2021

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

27 tháng 12 2021

giải cho mình bài 2 lun đc ko

 

1 tháng 1 2019

\(a,A=1000-\left|x+5\right|\)

Vì \(\left|x+5\right|\ge0\Rightarrow\)\(A\ge1000\)

Dấu \("="\) xảy ra khi \(\left|x+5\right|=0\Leftrightarrow x+5=0\)

       \(\Leftrightarrow x=-5\)

Vậy  \(A_{Max}=1000\Leftrightarrow x=-5\)

1 tháng 1 2019

\(b,B=\left|y-3\right|+50\)

Vì \(\left|y-3\right|\ge0\Rightarrow\) \(B\le50\) 

Dấu \("="\) xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y-3=0\)

\(\Leftrightarrow y=3\)

Vậy \(B_{Min}=50\Leftrightarrow y=3\)

7 tháng 7 2021

\(A=x^2-x=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\) 

Vậy \(A_{min}=-\dfrac{1}{4}\)

7 tháng 7 2021

 

A= x^2-x

A= (x-1/2)^2-1/4

ta thấy (x-1/2)^2\(\ge\)0

=>(x-1/2)^2-1/4\(\ge\)-1/4

hay A\(\ge\)-1/4

vậy \(A_{min}\)=-1/4<=>x=1/2

 

22 tháng 9 2021

A = \(|x-\dfrac{2}{3}|-\dfrac{1}{2}\)

A = \(\left[{}\begin{matrix}x-\dfrac{2}{3}-\dfrac{1}{2}\\-\left(x-\dfrac{2}{3}\right)-\dfrac{1}{2}\end{matrix}\right.\)

A = \(\left[{}\begin{matrix}x-\dfrac{1}{6}\\-x+\dfrac{2}{3}-\dfrac{1}{2}\end{matrix}\right.\)

A = \(\left[{}\begin{matrix}x-\dfrac{1}{6}\\-x+\dfrac{1}{6}\end{matrix}\right.\)

TH1\(x-\dfrac{1}{6}\) có giá trị nhỏ nhất khi \(x-\dfrac{1}{6}=0\) với x = \(\dfrac{1}{6}\)

TH2\(-x+\dfrac{1}{6}\) có giá trị nhỏ nhất khi \(-x+\dfrac{1}{6}=0\) với x = \(\dfrac{1}{6}\)

Vậy A đạt giá trị nhỏ nhất khi \(x=\dfrac{1}{6}\)

22 tháng 9 2021

Em cảm ơn anh nhiều lắm ạ

30 tháng 4 2016

biết trước đề ak