K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 5 2020

\(3=x^2+y^2+xy\ge2xy+xy=3xy\Rightarrow xy\le1\)

\(3=x^2+y^2+xy\ge-2xy+xy=-xy\Rightarrow xy\ge-3\)

\(\Rightarrow-3\le xy\le1\)

\(x^2+y^2+xy=3\Rightarrow x^2+y^2=3-xy\)

\(\Rightarrow T=3-xy-xy=3-2xy\ge3-2.1=1\) \(\Rightarrow A=1\)

\(T=3-2xy\le3-2.\left(-3\right)=9\Rightarrow T\le9\) \(\Rightarrow B=9\)

\(\Rightarrow A+B=10\)

7 tháng 2 2022

Bạn xem lại đề nghen, đoạn thỏa mãn đó có vấn đề phải không nhỉ?

7 tháng 2 2022

không có vấn đề gì đâu bạn ơi

26 tháng 8 2020



bđt1

bạn sửa lại là 9-2t^2 nhé , mình đánh nhầm ^^

26 tháng 8 2020

chuẩn nhé !

bđt 123

NV
25 tháng 10 2021

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

NV
25 tháng 10 2021

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

25 tháng 5 2021

ÁP dụng BĐT bunhia có:

 \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\left(7-x\right)^2\le3\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow-\dfrac{\left(7-x\right)^2}{3}\ge-\left(a^2+b^2+c^2\right)\)

Pt (2)\(\Leftrightarrow\)\(x^2=13-\left(a^2+b^2+c^2\right)\le13-\dfrac{\left(7-x\right)^2}{3}\)

\(\Leftrightarrow3x^2\le39-\left(7-x\right)^2\)

\(\Leftrightarrow4x^2-14x+10\le0\) \(\Leftrightarrow1\le x\le\dfrac{5}{2}\)

=>xmin=1 \(\Leftrightarrow\)a=b=c=2

xmax=\(\dfrac{5}{2}\)\(\Leftrightarrow\) a=b=c=\(\dfrac{3}{2}\)

 

12 tháng 2 2022

a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)

Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)

\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)

Dấu''='' xảy ra khi m =2 

Vậy ...