K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔBMG và ΔCMD có

BM=CM(AM là đường trung tuyến ứng với cạnh BC của ΔABC)

\(\widehat{BMG}=\widehat{CMD}\)(hai góc đối đỉnh)

GM=DM(M là trung điểm của GD)

Do đó: ΔBMG=ΔCMD(c-g-c)

\(\widehat{GBM}=\widehat{DCM}\)(hai góc tương ứng)

\(\widehat{GBM}\)\(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên BG//DC(dấu hiệu nhận biết hai đường thẳng song song)

2: Xét ΔABC có

AM là đường trung tuyến ứng với cạnh BC(gt)

BN là đường trung tuyến ứng với cạnh AC(gt)

AM\(\cap\)BN={G}

Do đó: G là trọng tâm của ΔABC(định lí ba đường trung tuyến của tam giác)

\(AG=\frac{2}{3}AM\)(tính chất)(1)

Ta có: AG+GM=AM(G nằm giữa A và M)

hay \(GM=AM-AG=AM-\frac{2}{3}AM=\frac{1}{3}AM\)

mà GD=2GM(M là trung điểm của GD)

nên \(GD=2\cdot\frac{1}{3}AM=\frac{2}{3}AM\)(2)

Từ (1) và (2) suy ra AG=GD

mà A,G,D thẳng hàng(A,G,M,D thẳng hàng)

nên G là trung điểm của AD

Xét ΔADC có

G là trung điểm của AD(cmt)

N là trung điểm của AC(BN là đường trung tuyến ứng với cạnh AC của ΔABC)

Do đó: GN là đường trung bình của ΔADC(định nghĩa đường trung bình của tam giác)

⇒GN//DC và \(GN=\frac{DC}{2}\)(định lí 2 về đường trung bình của tam giác)(3)

Ta có: G là trọng tâm của ΔABC(cmt)

\(GN=\frac{1}{3}BN\)(tính chất)(4)

Từ (3) và (4) suy ra \(\frac{DC}{2}=\frac{1}{3}BN\)

\(\frac{DC}{2}=\frac{BN}{3}\)

hay \(3\cdot CD=2\cdot BN\)(ddpcm)

17 tháng 9 2023

a) G là giao điểm của hai đường trung tuyến AM và BN nên G là trọng tâm tam giác ABC.

Suy ra: \(AG = 2GM\).  Mà trên tia đối của tia MA lấy điểm D sao cho MD = MG nên \(GD = 2GM\).

Vậy GA = GD (= 2GM).

b) Xét hai tam giác MBG và MCD có:

     MB = MC (M là trung điểm cạnh BC)

     \(\widehat {GMB} = \widehat {DMC}\)(đối đỉnh)

     GM = GD.

Vậy \(\Delta MBG = \Delta MCD\)(c.g.c).

c) \(\Delta MBG = \Delta MCD\) nên BG = CD (2 cạnh tương ứng).

Mà G là trọng tâm tam giác ABC nên \(BG = 2GN\). Mà BG = CD nên \(CD = 2GN\).

1 tháng 4 2016
  • A B C G D M 1 2 A B C D T E 2 1
21 tháng 8 2023

a) Để chứng minh AM vuông góc với BC, ta sử dụng tính chất của tam giác cân. Vì tam giác ABC cân tại A, nên ta có MA = MC. Vì M là trung điểm của BC, nên ta có MB = MC. Từ đó, ta có MA = MB. Giả sử ta kẻ đường thẳng AM. Vì MA = MB, nên đường thẳng AM là đường trung tuyến của tam giác ABC. Theo tính chất của đường trung tuyến, ta có AM song song và bằng một nửa đoạn thẳng BC. Do đó, AM vuông góc với BC. b) Vì tam giác ABC cân tại A, nên ta có góc BAC = góc BCA. Vì góc BAC = 40 độ, nên góc BCA = 40 độ. Vì tam giác ABC cân tại A, nên tổng hai góc B và góc C là 180 độ - góc BAC = 180 độ - 40 độ = 140 độ. Vì tam giác ABC là tam giác cân, nên góc B = góc C = (180 độ - 140 độ)/2 = 20 độ. Vậy góc B của tam giác ABC là 20 độ và góc C cũng là 20 độ. c) Để chứng minh AB // CD, ta sử dụng tính chất của đường trung tuyến. Vì N là trung điểm của đoạn thẳng BC, nên BN song song và bằng một nửa đoạn thẳng AC. Từ đó, ta có: BN = 1/2 AC. Giả sử ta kẻ đường thẳng CD. Vì NB = ND, nên ta có: 1/2 AC = NB = ND. Do đó, ta có AB // CD. Để chứng minh tam giác ACD cân, ta sử dụng tính chất của đường trung tuyến. Vì D là điểm trên đường trung tuyến BN, nên ta có: ND = 1/2 NB. Từ đó, ta có: ND = 1/2 NB = 1/2 AC. Vì NB = ND và AD là đoạn thẳng chứa đường trung tuyến BN, nên ta có: AD song song và bằng một nửa đoạn thẳng AC. Do đó, tam giác ACD cân. d) Để chứng minh BK = 1/3 BD, ta sử dụng tính chất của điểm giao nhau của hai đường trung tuyến. Vì K là giao điểm của AM và BN, nên ta có: AK = 2/3 AM và BK = 2/3 BN. Vì MA = MB (vì tam giác ABC cân tại A và M là trung điểm của BC), nên AM là đường trung tuyến của tam giác ABC. Từ đó, ta có: AM = 1/2 BC. Vì NB = ND (vì trên tia BN ta lấy điểm D sao cho NB = ND), nên BN cũng là đường trung tuyến của tam giác ABC. Từ đó, ta có: BN = 1/2 AC. Do đó, ta có: AM = 1/2 BC = 1/2 AC. Vì BN = 1/2 AC, nên ta có: BK = 2/3 BN = 2/3 * 1/2 AC = 1/3 AC. Vì AC = BD (vì tam giác ACD cân và D là điểm trên đường trung tuyến BN), nên ta có: BK = 1/3 BD. Vậy ta đã chứng minh BK = 1/3 BD.

a: ΔABC cân tại A có AM là đường trung tuyến

nên AM vuông góc BC

b: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)

c: Xét tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB//CD và AB=CD

=>CD=CA

=>ΔCAD cân tại C