K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2024

1; 5.22 + (\(x\) + 3) = 52

   5.4  +  (\(x\) + 3) = 25

    20 + (\(x\) + 3) = 25

             \(x\) + 3 = 25 - 20

             \(x+3\) = 5

             \(x\)       = 5  - 3

            \(x\)        = 2

            Vậy \(x=2\)

3 tháng 7 2024

2; 23 + (\(x\) - 32) = 53 - 43

   8 +  (\(x\) - 9)    = 125 - 64

   8 + (\(x\) - 9) = 61

         \(x\) - 9 = 61 - 8

         \(x\) - 9 = 53

        \(x\)        = 53  + 9

        \(x\)       = 62

        Vậy \(x\) = 62

 

      

30 tháng 1 2022

tui biết lm nè

25 tháng 10 2021

Dài thế sao tớ làm =((

20 tháng 9 2020

ngu thế à bạn

NV
24 tháng 10 2019

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)

\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)

b/ ĐKXĐ: ....

Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)

\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)

\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)

NV
24 tháng 10 2019

a/ ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{3+x}=x^2-3\)

Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:

\(a=x^2-\left(a^2-x\right)\)

\(\Leftrightarrow x^2-a^2+x-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)

\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))

\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)

d/ ĐKXĐ: ...

\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)

\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)

\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))

27 tháng 10 2023

a) 5.2² + (x + 3) = 5²

5.4 + x + 3 = 25

20 + x + 3 = 25

x + 23 = 25

x = 25 - 23

x = 2

b) 2³ + (x - 3²) = 5³ - 4³

8 + (x - 9) = 125 - 64

8 + x - 9 = 61

x - 1 = 61

x = 61 + 1

x = 62

c) 4.(x - 5) - 2³ = 2⁴.3

4x - 20 - 8 = 16.3

4x - 28 = 48

4x = 48 + 28

4x = 76

x = 76 : 4

x = 19

d) 5.(x + 7) - 10 = 2³.5

5x + 35 - 10 = 8.5

5x + 25 = 40

5x = 40 - 25

5x = 15

x = 15 : 5

x = 3

e) 7² - 7.(13 - x) = 14

49 - 91 + 7x = 14

7x - 42 = 14

7x = 14 + 42

7x = 56

x = 56 : 7

x = 8

27 tháng 10 2023

a) \(5\cdot2^2+\left(x+3\right)=5^2\)

\(\Rightarrow x+3=5^2-5\cdot2^2\)

\(\Rightarrow x+3=25-5\cdot4\)

\(\Rightarrow x+3=5\)

\(\Rightarrow x=5-3\)

\(\Rightarrow x=2\)

b) \(2^3+\left(x-3^2\right)=5^3-4^3\)

\(\Rightarrow8+\left(x-9\right)=125-64\)

\(\Rightarrow8+x-9=61\)

\(\Rightarrow x-1=61\)

\(\Rightarrow x=61+1\)

\(\Rightarrow x=62\)

c) \(4\left(x-5\right)-2^3=2^4\cdot3\)

\(\Rightarrow4\left(x-5\right)=2^4\cdot3+2^3\)

\(\Rightarrow4\cdot\left(x-5\right)=16\cdot3+8\)

\(\Rightarrow4\cdot\left(x-5\right)=56\)

\(\Rightarrow x-5=56:4\)

\(\Rightarrow x-5=14\)

\(\Rightarrow x=19\)

d) \(5\left(x+7\right)-10=2^3\cdot5\)

\(\Rightarrow5\left(x+7\right)=8\cdot5+10\)

\(\Rightarrow5\left(x+7\right)=40+10\)

\(\Rightarrow5\left(x+7\right)=50\)

\(\Rightarrow x+7=10\)

\(\Rightarrow x=10-7\)

\(\Rightarrow x=3\)

e) \(7^2-7\left(13-x\right)=14\)

\(\Rightarrow7\left(13-x\right)=7^2-14\)

\(\Rightarrow7\left(13-x\right)=49-14\)

\(\Rightarrow7\left(13-x\right)=35\)

\(\Rightarrow13-x=5\)

\(\Rightarrow x=13-5\)

\(\Rightarrow x=8\)

f) \(5x-5^2=10\)

\(\Rightarrow5x=10+5^2\)

\(\Rightarrow5x=10+25\)

\(\Rightarrow5x=35\)

\(\Rightarrow x=\dfrac{35}{5}\)

\(\Rightarrow x=7\)

g) \(9x-2\cdot3^2=3^4\)

\(\Rightarrow9x=3^4+2\cdot3^2\)

\(\Rightarrow9x=81+2\cdot9\)

\(\Rightarrow9x=99\)

\(\Rightarrow x=\dfrac{99}{9}\)

\(\Rightarrow x=11\)

h) \(10x+2^2\cdot5=10^2\)

\(\Rightarrow10x=10^2-2^2\cdot5\)

\(\Rightarrow10x=100-4\cdot5\)

\(\Rightarrow10x=80\)

\(\Rightarrow x=\dfrac{80}{10}\)

\(\Rightarrow x=8\)

i) \(125-5\left(4+x\right)=15\)

\(\Rightarrow5\left(4+x\right)=125-5\)

\(\Rightarrow5\left(4+x\right)=120\)

\(\Rightarrow4+x=\dfrac{120}{5}\)

\(\Rightarrow4+x=24\)

\(\Rightarrow x=24-4\)

\(\Rightarrow x=20\)

j) \(2^6+\left(5+x\right)=3^4\)

\(\Rightarrow5+x=3^4-2^6\)

\(\Rightarrow5+x=81-64\)

\(\Rightarrow5+x=17\)

\(\Rightarrow x=17-5\)

\(\Rightarrow x=12\)

6 tháng 11 2018

b,2x.(x-5)-x.(3+2x)=26

2x2 - 10x - 3x - 2x2 = 26

-13x = 26

x = -2

c, (x+7)2-x.(x-3)=12

x2 +14x +49 - x2 + 3x = 12

17x + 49 = 12

17x = - 37

x = \(\dfrac{-37}{17}\)

d, 9( x -2018) - x+ 2018 =0

9( x -2018) - (x -2018) = 0

( 9-1)(x -2018) = 0

8( x -2018) = 0

x -2018 = 0

x = 2018

17 tháng 11 2022

a: =>2x+10-x^2-5=0

=>-x^2+2x+5=0

=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)

e: =>4x^2+4x+9x^2-4=15

=>13x^2+4x-19=0

=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)

Bài 2: 

b: =>x-1>-4 và x-1<4

=>-3<x<5

c: =>x-2011>2012 hoặc x-2011<-2012

=>x>4023 hoặc x<-1

d: \(\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}>=0\forall x,y\)

mà \(\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}< 0\)

nên \(\left(x,y\right)\in\varnothing\)

12 tháng 11 2017

a) 135 - 5(x + 4) = 35 

<=> 135 - 5x - 20 = 35

<=> 115 - 5x = 35

<=> 5x = 115 - 35 

<=> 5x = 80 

<=> x = 16

7 tháng 7 2019

b) 25 + 3 (x - 8) = 106

=>        3 ( x - 8) = 106 - 25

=>        3 ( x - 8) = 81

=>           ( x - 8) = 81: 3

=>             x - 8  = 27

=>             x       = 27 + 8

=>             x       = .......

18 tháng 9 2018

a) \(3\left(x^2-2x+1\right)+x\left(2-3x\right)=7\)

\(\Rightarrow3x^2-6x+3+2x-3x^2=7\)

\(\Rightarrow-4x+3=7\)

\(\Rightarrow-4x+3-7=0\)

\(\Rightarrow-4x-4=0\)

\(\Rightarrow-4\left(x+1\right)=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

b) \(5\left(x-2\right)+2\left(x+3\right)=10\)

\(\Rightarrow5x-10+2x+6=10\)

\(\Rightarrow7x-4=10\)

\(\Rightarrow7x=10+4=14\)

\(\Rightarrow x=\dfrac{14}{7}=2\)

c) \(\left(x+1\right)\left(-3\right)+5\left(x-4\right)=-3\)

\(\Rightarrow-3x-3+5x-20=-3\)

\(\Rightarrow2x-23=-3\)

\(\Rightarrow2x=-3+23=20\)

\(\Rightarrow x=\dfrac{20}{2}=10\)

d) \(2\left(x-1\right)-x\left(3-x\right)=x^2\)

\(\Rightarrow2x-2-3x+x^2=x^2\)

\(\Rightarrow-x-2+x^2-x^2=0\)

\(\Rightarrow-x-2=0\)

\(\Rightarrow-x=2\)

\(\Rightarrow x=-2\)

đ) \(3x\left(x+5\right)-2\left(x+5\right)=3x^2\)

\(\Rightarrow3x^2+15x-2x-10=3x^2\)

\(\Rightarrow3x^2-3x^2+13x-10=0\)

\(\Rightarrow13x-10=0\)

\(\Rightarrow13x=10\)

\(\Rightarrow x=\dfrac{10}{13}\)

e) \(4x\left(x+2\right)+x\left(4-x\right)=3x^2+12\)

\(\Rightarrow4x^2+8x+4x-x^2=3x^2+12\)

\(\Rightarrow3x^2+12x=3x^2+12\)

\(\Rightarrow3x^2+12x-3x^2-12=0\)

\(\Rightarrow12\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

f) \(\dfrac{1}{3}x\left(3x+6\right)-x\left(x-5\right)=9\)

\(\Rightarrow x^2+2x-x^2+5x=9\)

\(\Rightarrow7x=9\)

\(\Rightarrow x=\dfrac{9}{7}\)