CMR: 2x3 - 3x2 - 3x + 2= 0. Có 3 nghiệm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Xét y = 2x3 – 3x2 + 1
Ta có: y’ = 6x2 – 6x
ð y’ = 0 ⇔ x = 0 hoặc x = 1
Ta có bảng biến thiên
Số nghiệm phương trình đã cho m = 2x3 – 3x2 + 1
= Số giao điểm của đồ thị hàm số y = 2x3 – 3x2 + 1 và đường thẳng y = m
-> 0<m<1
\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)
\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)
a: Δ=(-3)^2-4(m-2)
=9-4m+8
=17-4m
Đểphương trình có 2 nghiệm phân biệt thì -4m+17>0
=>-4m>-17
=>m<17/4
b: TH1: m=5
=>-x+1=0
=>x=1(loại)
TH2: m<>5
Δ=(-1)^2-4(m-5)
=1-4m+20=21-4m
Để phương trình có hai nghiệm phân biệt thì 21-4m>0
=>4m<21
=>m<21/4
\(\text{Δ}=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)
Để phương trình có hai nghiệm phân biệt thì -4m+13>0
hay m<13/4
Áp dụng Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=2\\x_2=1\end{matrix}\right.\)
Theo đề, ta có: m-1=2
hay m=3(nhận)
Đặt \(f\left(x\right)=2x^3-9x^2+12x-2-m\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(\forall m\in\left(2;3\right)\) ta có:
\(f\left(0\right)=-2-m< 0\)
\(f\left(1\right)=3-m>0\)
\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (1)
\(f\left(2\right)=2-m< 0\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (2)
\(f\left(3\right)=7-m>0\)
\(\Rightarrow f\left(2\right).f\left(3\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;3\right)\) (3)
Từ (1); (2); (3) \(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm dương pb
\(2x^3-3x^2-3x+2=0\)
\(\Leftrightarrow2x^3-2x^2-4x-x^2+x+2=0\)
\(\Leftrightarrow2x\left(x^2-x-2\right)-\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-1\\x=2\end{matrix}\right.\) \(\Rightarrow\) pt có 3 nghiệm pb
Tính luôn ra, khỏi áp dụng định lý liên tục gì cho lẹ :D