Cho tanα - cotα =3. Tinh gtri bthuc \(\frac{1}{tan^2\alpha}+\frac{1}{cot^2\alpha}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sin a=3/5
=>cos a=4/5
tan a=3/5:4/5=3/4; cot a=1:3/4=4/3
M=(4/3+3/4):(4/3-3/4)=25/7
1+cot a=1+cos a/sin a =(sin a+cos a)/sin a =>sin2 a/(1+cot a)=sin3 a/(sin a+cos a)
1+tan a= 1+ sin a/cos a = (cos a+sin a)/cos a => cos2 a/(1+tan a)=cos3 a(sin a+cos a)
biểu thức là sin a.cos a +(sin3 a+cos3 a)(sin a+cos a)=sina.cosa + sin2a-sina.cosa+cos2a= sin2a+cos2a
a, Ta có: \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow\left(\dfrac{3}{5}\right)^2+cos^2\alpha=1\Leftrightarrow cos\alpha=\pm\dfrac{4}{5}\)
Vậy đẳng thức có thể đồng thời xảy ra.
b, Ta có: \(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\Rightarrow1+cot^2\alpha=\dfrac{1}{\left(\dfrac{1}{3}\right)^2}\Rightarrow cot\alpha=\pm2\sqrt{2}\)
Hai đẳng thức không thể đồng thời xảy ra.
c, Ta có: \(tan\alpha\cdot cot\alpha=1\Rightarrow3\cdot cot\alpha=1\Rightarrow cot\alpha=\dfrac{1}{3}\)
Đẳng thức có thể đồng thời xảy ra.
\(a=\left(\frac{sina+\frac{sina}{cosa}}{cosa+1}\right)^2+1=\left(\frac{sina\left(cosa+1\right)}{cosa\left(cosa+1\right)}\right)^2+1\)
\(=tan^2a+1=\frac{1}{cos^2a}\)
\(b=\frac{sina}{cosa}\left(\frac{1+cos^2a-sin^2a}{sina}\right)=\frac{sina}{cosa}\left(\frac{2cos^2a}{sina}\right)=2cosa\)
\(c=1-\frac{cos^2a}{cot^2a}+\frac{sina.cosa}{\frac{cosa}{sina}}=1-cos^2a.\frac{sin^2a}{cos^2a}+\frac{sin^2a.cosa}{cosa}\)
\(=1-sin^2a+sin^2a=1\)
\(P=\dfrac{tan\left(-a\right)+2\cdot cota}{3\cdot tan\left(\dfrac{pi}{2}+a\right)}=\dfrac{-tana+2\cdot\dfrac{1}{2}}{3\cdot\left(-cota\right)}\)
\(=\dfrac{-2+1}{3\cdot\dfrac{-1}{2}}=-1:\dfrac{-3}{2}=\dfrac{2}{3}\)
\(tana-cota=3\Rightarrow\left(tana-cota\right)^2=9\)
\(\Rightarrow tan^2a+cot^2a-2=9\Rightarrow tan^2a+cot^2a=11\)
\(\frac{1}{tan^2a}+\frac{1}{cot^2a}=\frac{tan^2a+cot^2a}{\left(tana.cota\right)^2}=tan^2a+cot^2a=11\)