Tìm x nguyên để biểu thức sau đạt giá trị lớn nhất:
D=4/ lx-2l+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với \(xy\ge0\) ta có:
\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Lập bảng xét dấu:
x | -2 5/4 |
5/4-x | + | + 0 - |
x+2 | - 0 + | + |
(5/4-x)(x+2) | - 0 + 0 - |
Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Mmin=13/4 khi \(x\in\left\{-1;0;1\right\}\)
a: \(A=\dfrac{x^2-8x+16-x^2+16}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-8\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-4x}{\left(x+4\right)\left(x-1\right)}\)
D= 4/|x -2| + 2 lớn nhất khi 4/|x -2| lớn nhất suy ra |x -2| là số nguyên dương nhỏ nhất => |x -2|=1=>x-2=1 hoặc x-2=-1 => x=3 hoặc x=1
Vậy với x=3 hoặc x=1 thì D có giá trị lớn nhất là D=4/|3 -2| + 2=4+2=6 hoặc D=4/|1 -2| + 2=4+2=6
Do \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+2\ge2\Rightarrow D\le\frac{4}{2}=2\)
Đẳng thức xảy ra tại x=2
Vậy \(D_{max}=2\) tại x=2
Ix+2I +2 la so duong vi :+2>0
+gttd luon la so duong
-.4 / Ix-2I+2 >0
ma 4 / Ix-2I+2 dat gtln->4 chia het cho Ix-2I+2
Ix-2I+2 E U(4)= 1,2,4
loai 4 vi 4/4=1
loai 1 vi neu Ix-2I+2=1->Ix-2I=1-2=-1->x E thr
=>Ix-2I+2=2
Ix-2I=2-2=0
=>x-2=0 ===> x=0+2=2
KL: de D co gtln, x phai =2