Bài 6 : Cho đường thẳng \(\Delta\) có phương trình 5x + 3y -5 = 0
a , Tính khoảng cách điểm A ( -1 , 3 ) đến đường thẳng \(\Delta\)
b , Tính khoảng cách giữa 2 đường thẳng song song \(\Delta,\Delta\)' : 5x + 3y = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).
b) Ta có: \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\). Phương trình đường thẳng a là:
\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)
c) Ta có: \(\overrightarrow {{u_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}} = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:
\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)
a) Ta có: \(\Delta \):\(\frac{x}{{ - 4}} + \frac{y}{2} = 1 \Leftrightarrow x - 2y + 4 = 0\)
Vậy khoảng cách từ O đến \(\Delta \) là: \(d\left( {O;\Delta } \right) = \frac{{\left| {1.0 - 2.0 + 4} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{4\sqrt 5 }}{5}\)
b) Lấy \(M\left( {0;1} \right) \in {\Delta _1}\)
Suy ra: \(d\left( {{\Delta _1},{\Delta _2}} \right) = d\left( {M,{\Delta _2}} \right) = \frac{{\left| {0 - 1 - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \)
a.
Gọi \(M\left(x;y\right)\in d\)
\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)
\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)
b.
Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)
\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)
\(\Leftrightarrow7a^2+48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)
\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)
a) Trên đường thẳng \(\Delta \) lấy điểm \(B\) khác \(A\).
Kẻ \(AH \bot \Delta ',BK \bot \Delta '\left( {H,K \in \Delta '} \right)\)
\(ABKH\) là hình chữ nhật \( \Rightarrow AH = BK\)
\( \Rightarrow d\left( {A,\Delta '} \right) = d\left( {B,\Delta '} \right)\)
Vậy khoảng cách từ điểm \(A\) đến đường thẳng \(\Delta '\) không phụ thuộc vào vị trí của điểm \(A\) trên đường thẳng \(\Delta \).
b) Khoảng cách đó gợi nên khái niệm khoảng cách giữa hai đường thẳng song song.
Lời giải:
Vì PTĐT cần tìm song song với $(\Delta)$ nên nó có dạng:
$3x-4y+m=0$
Khoảng cách từ $M$ đến đt cần tìm là:
$\frac{|3.2-4.(-2)+m|}{\sqrt{3^2+4^2}}=2$
$\Leftrightarrow |m+14|=10$
$\Rightarrow m=-4$ hoặc $m=-24$
Vậy PTĐT cần tìm là: $3x-4y-4=0$ hoặc $3x-4y-24=0$
Lấy \(A\left(2;2\right)\) là 1 điểm thuộc \(\Delta_1\)
\(d\left(\Delta_1;\Delta_2\right)=d\left(A;\Delta_2\right)=\dfrac{\left|5.2-7.2+6\right|}{\sqrt{5^2+\left(-7\right)^2}}=\dfrac{\sqrt{74}}{37}\)
a: Khi x=-2 thì (y+2)^2=25-(-2-1)^2=25-9=16
=>y=2 hoặc y=-6
TH1: A(-2;2)
I(1;-2)
vecto IA=(-3;4)
Phương trình Δ là:
-3(x-1)+4(y+2)=0
=>-3x+3+4y+8=0
=>-3x+4y+11=0
TH2: A(-2;-6); I(1;-2)
vecto IA=(-3;-4)=(3;4)
Phương trình IA là:
3(x+2)+4(y+6)=0
=>3x+6+4y+24=0
=>3x+4y+30=0
b: Δ//12x+5y+6=0
=>Δ: 12x+5y+c=0
d(I;Δ)=5
=>\(\dfrac{\left|12\cdot1+5\cdot\left(-2\right)+c\right|}{\sqrt{12^2+5^2}}=5\)
=>|c+2|=5*13=65
=>c=63 hoặc c=-67
Ta có: \(\Delta//d\Rightarrow\Delta:2x-3y+c=0\left(c\ne-1\right)\)
\(A\left(1;2\right)\in\Delta:2\cdot1-3\cdot2+c=0\)
\(\Leftrightarrow c=4\)
Vậy: \(\Delta:2x-3y+4=0\)
Vì (Δ)//d nên Δ: 2x-3y+c=0
Thay x=1 và y=2 vào Δ, ta được:
c+2-6=0
=>c=4