cho tam giác ABC có phương trình cạnh AB:5x-3y+2=0 và có phương trình hai đường cao AA':4x-3y+1=0,BB':7x+2y-22=0.Lập phương trình hai cạnh còn lại và đường cao CC' của tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C d2 d1 H
A = AB giao d1=> Tọa độ A là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x+1=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x=-1\\y=\frac{1+4x}{3}\end{cases}\)<=> \(\begin{cases}x=-1\\y=-1\end{cases}\)=> A (-1; -1)
Đường thẳng d2 có vtpt là \(\vec{n_2}\left(7;2\right)\) chính là vtcp của đường thẳng AC , điểm A thuộc AC
=> Phương trình đường thẳng AC có dạng: \(\begin{cases}x=-1+7t\\y=-1+2t\end{cases}\)(t \(\in\) R)
Gọi H = d1 \(\cap\) d2 => tọa độ H là nghiệm của pt: \(\begin{cases}7x+2y-22=0\\4x-3y+1=0\end{cases}\) <=> \(\begin{cases}x=\frac{64}{29}\\y=\frac{95}{29}\end{cases}\)=> H (\(\frac{64}{29};\frac{95}{29}\))
Đường cao CH đi qua H và có vtcp chính là vtpt của AB là \(\vec{n}\) (5; -3)
=> Phương trình CH có dạng : \(\begin{cases}x=\frac{64}{29}+5t\\y=\frac{95}{29}-3t\end{cases}\)
B = AB \(\cap\) d2 => Tọa độ B là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\7x+2y-22=0\end{cases}\) <=> \(\begin{cases}x=2\\y=4\end{cases}\)=> B (2;4)
Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là \(\vec{n_1}\)(4;-3)
=> phương trình đường thẳng BC là: \(\begin{cases}x=2+4t\\y=4-3t\end{cases}\)
Ta có, AB và AC cắt nhau tại A nên tọa độ đỉnh A là nghiệm của hệ phương trình :
x − 3 y − 1 = 0 5 x − 2 y + 1 = 0 ⇒ A − 5 13 ; − 6 13
Đường thẳng BC có VTPT n B C → ( 1 ; 3 ) .
Vì A H ⊥ B C nên đường thẳng AH nhận vecto n B C → ( 1 ; 3 ) làm VTCP, một VTPT của AH là: n A H → ( 3 ; − 1 )
Phương trình đường cao AH của tam giác là:
3 x + 5 13 − y + 6 13 = 0 ⇔ 39 x − 13 y + 9 = 0
ĐÁP ÁN B
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
Tìm tọa độ điểm A
Ta có: AB ∩ AC = A
=>Tọa độ điểm A là nghiệm hệ
{ 2x-3y-1=0 <=> { x = -5/11 => A(-5/11;-7/11)
{ 5x-2y+1=0`````````{ y = -7/11
♣Đương cao qua đỉnh A
Gọi (d) là đường cao qua đỉnh A
Vì (d) _|_ BC =>phương trình (d) dạng: 3x - y + m = 0
Vì A € (d) => 3.(-5/11) + 7/11 + m = 0 <=> m = 8/11
Vậy pt (d): 3x - y + 8/11 = 0 <=> 33x - 11y + 8 = 0
```````````````````
Bài 2a:Gọi (d') là đường thẳng đối xứng với (d) qua M
A(x;y) € (d) và B(x';y') là điểm đối xứng với A(x;y) qua M
=>B(x';y') € (d')
Vì M là trung điểm của AB
=>{ (x+x' )/2 = 2 =>{ x = 4 - x'
````{ (y+y' )/2 = 1 ````{ y = 2 - y'
=>A(4-x';2-y')
Vì A € (d) => 4-x' - (2 - y' ) = 0 <=> x' - y' - 2 = 0
Vậy pt (d'): x - y - 2 =0
Tìm tọa độ điểm A
Ta có: AB ∩ AC = A
=>Tọa độ điểm A là nghiệm hệ
{ 2x-3y-1=0 <=> { x = -5/11 => A(-5/11;-7/11)
{ 5x-2y+1=0`````````{ y = -7/11
Đương cao qua đỉnh A
Gọi (d) là đường cao qua đỉnh A
Vì (d) _|_ BC =>phương trình (d) dạng: 3x - y + m = 0
Vì A € (d) => 3.(-5/11) + 7/11 + m = 0 <=> m = 8/11
Vậy pt (d): 3x - y + 8/11 = 0 <=> 33x - 11y + 8 = 0
tick dung cho em nhé