K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2020

2, \(\widehat{ABC} + \widehat{BCA} = \widehat{BAC} = 90^0 ⇒ \widehat{BCA} = 90^0 - \widehat{ABC}\)

\(\widehat{ABC} +\widehat{ BAH} = \widehat{BAC} =90^0⇒\widehat{BAH} = 90^0 - \widehat{ABC}\)

\(\widehat{BCA} = \widehat{BAH}\)

XÉT \(\bigtriangleup\)HBA và\(\bigtriangleup\) HAC có :

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{BCA}=\widehat{BAH}\)

\(\bigtriangleup\)HBA ∼ \(\bigtriangleup\) HAC

b, Áp dụng hệ thức \(b^2=a.b'\) vào \(\bigtriangleup{ABC}\) vuông tại A , ta có :

\(AC^2=BC.CH\) (đpcm)

c, Áp dụng hệ thức \(h^2=b'.c'\) vào \(\bigtriangleup{ABC}\) vuông tại A, ta có :

\(AH^2=BH.CH\) (đpcm)

NV
10 tháng 7 2021

Áp dụng định lý Pitago: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

Hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=7,2\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\)

\(CH=BC-BH=9,6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot15=9\cdot12=108\)

hay AH=7,2(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=15(cm)

9 tháng 1 2019

*Tính độ dài đoạn thẳng AB

Áp dụng định lí Pi - ta -go cho Δ ABH vuông tại H có :

\(AB^2=AH^2+BH^2=12^2+9^2=144+81=225\)

=> \(AB=\sqrt{225}=15\) ( cm )

*Tính độ dài đoạn thẳng AC

Ta có : \(HC=BC-BH=25-9=16\left(cm\right)\)

Áp dụng định lí Pi - ta - go cho Δ AHC vuông tại H có :

\(AC^2=AH^2+HC^2=12^2+16^2=144+256=400\)

=> \(AC=\sqrt{400}=20\left(cm\right)\)

* Xét tam giác ABC có : \(BC^2=25^2=625\)

mặt khác : \(AB^2+AC^2=15^2+20^2=225+400=625\)

=> Δ ABC vuông tại A

Hình vẽ :

A H B C 25cm 9cm 12cm

9 tháng 1 2019

Cảm ơn bạn nhìu!!!!!!!!!!!