cho f(x) =1/6x^3-1/6x
chứng tỏ f(x) luôn nhận giá trị nguyên với moi x thuộc Z
giúp mình rồi mihf tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(0)=a.0
2
+b.0+c=c=>c là số nguyên
f(1)=a.1
2
+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2
2
+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
f(x)=ax2+bx+cf(x)=ax2+bx+c
f(0)=a.02+b.0+c=cf(0)=a.02+b.0+c=c
⇒⇒ c là số nguyên
f(1)=a.12+b.1+c=a+b+cf(1)=a.12+b.1+c=a+b+c
Vì c là số nguyên nên a + b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+cf(2)=a.22+b.2+c=2(2a+b)+c
Vì c là số nguyên nên 2(2a + b) là số nguyên
⇒⇒ 2a + b là số nguyên (2)
Từ (1) và (2) ⇒⇒ (2a + b) - (a + b) là số nguyên ⇒⇒ a là số nguyên
⇒⇒ b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên.
#ks+Kbn= Add
#Uyên_Ami_BTS >,<
#Taehyung_stan
Ta có f(0) = a.02 + b.0+c =c
=> c là số nguyên
f(1) = a.12+ b.1+c=a +b + c = (a+)b+c
Vi c là số nguyên nên a+b là số nguyên (1)
f(2) = a.22+ b.2+c=2(2a+b)+c
=> 2(2a+b) là số nguyên
=>2a +b là số nguyên (2)
Từ (1) và (2)
=>(2a +b)-(à+b) là số nguyên => a là số nguyên =>b là số nguyên
=>f(x) luôn nhận giá trị nguyên với mọi x nguyên.
Ta có f(0)=a.02+b.0+c=c
=> c là số nguyên
f(1)=a.12+b.1+c=a+b+c=(a+b)+c
Vì c là số nguyên nên a+b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+c
=>2.(2a+b) là số nguyên
=> 2a+b là số nguyên (2)
Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên =>a là số nguyên => b cũng là số nguyên
Vậy f(x) luôn nhân giá trị nguyên với mọi x
Ta có f(0)=a.0\(^2\)+b.0+c=c=>c là số nguyên
f(1)=a.1\(^{^2}\)+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2\(^2\)+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
mấy bạn giải theo kiến thức lớp 7 hộ mình nha