K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: 

 BC2 = AC2 + AB2

252 = 152 + AB2 \(\Rightarrow ab=20\left(cm\right)\)

Xét tam giác ABC có:

  AC < AB < BC nên \(\widehat{CBA}< \widehat{BCA}< \widehat{BAC}.\)

b)  Xét tam giác vuông EHA và tam giác vuông EHC có:

Cạnh EH chung

HC = HA

\(\Rightarrow\Delta EHC=\Delta EHA\)  (Hai cạnh góc vuông)

Do \(\Delta EHC=\Delta EHA\Rightarrow\widehat{ECA}=\widehat{EAC}\)

\(\Rightarrow\widehat{EBA}=\widehat{EAB}\)    (Cùng phụ với hai góc bên trên)

Vậy nên tam giác EAB cân tại E.

c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến. 

Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.

Theo tính chất trọng tâm ta có:

\(\frac{AG}{AC}=\frac{1}{3}\Rightarrow AG=\frac{1}{5}.15=5\left(cm\right)\)

d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.

Gọi giao điểm của EH với CN là F'. Khi đó ta có \(\Delta ECH=\Delta F'CH\)   (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow CE=CF'\)

Lại có \(CE=\frac{1}{2}BC=\frac{1}{2}CN\Rightarrow CF'=\frac{1}{2}CN\)

Suy ra F' là trung điểm CN hay F' trùng F.

Vậy nên E, H, FA thẳng hàng.

17 tháng 8 2018

Bài giải : 

a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: 

 BC2 = AC2 + AB2

252 = 152 + AB2 ⇒ab=20(cm)

Xét tam giác ABC có:

  AC < AB < BC nên ^CBA<^BCA<^BAC.

b)  Xét tam giác vuông EHA và tam giác vuông EHC có:

Cạnh EH chung

HC = HA

⇒ΔEHC=ΔEHA  (Hai cạnh góc vuông)

Do ΔEHC=ΔEHA⇒^ECA=^EAC

⇒^EBA=^EAB    (Cùng phụ với hai góc bên trên)

Vậy nên tam giác EAB cân tại E.

c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến. 

Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.

Theo tính chất trọng tâm ta có:

AGAC =13 ⇒AG=15 .15=5(cm)

d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.

Gọi giao điểm của EH với CN là F'. Khi đó ta có ΔECH=ΔF'CH   (Cạnh góc vuông và góc nhọn kề)

⇒CE=CF'

Lại có CE=12 BC=12 CN⇒CF'=12 CN

Suy ra F' là trung điểm CN hay F' trùng F.

Vậy nên E, H, FA thẳng hàng.

16 tháng 6 2017

Đáp án B

 => Đường thẳng AB có pt là: x- y – 5= 0.

Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).

Ta có: 

Vậy C( 1 ; -1) và  C( -2 ; 10)

14 tháng 10 2021

cho mk xin cả cách giải nha

10 tháng 9 2018

Chọn D.

Áp dụng quy tắc momen lực:

P.GO = F.BO