K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

Đáp án B

Mặt phẳng α  chứa MN song song với AB

Gọi E và F lần lượt là trung điểm của BC và BD

Tam giác ABC có EM là đường trung bình nên ME // = 1/2 AB

Tam giác ABD có FN là đường trung bình nên FN // = 1/2 AB

Suy ra ME //  FN // AB và ME = FN

Hay mặt phẳng (MNFE) chính là mặt phẳng  α

Vậy thiết diện của mặt phẳng  α  với tứ diện là hình bình hành MNFE (do ME // = FN) 

26 tháng 12 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Hai tam giác ABC và BAD bằng nhau ( c.c.c) nên có các đường trung tuyến tương ứng bằng nhau: CM = DM

Ta có tam giác MCD cân tại M, do đó MN ⊥ CD vì N là trung điểm của CD. Tương tự ta chứng minh được NA = NB và suy ra MN ⊥ AB. Mặt phẳng (CDM) không vuông góc với mặt phẳng (ABN) vì (CDM) chứa MN vuông góc với chỉ một đường thẳng AB thuộc (ABN) mà thôi.

12 tháng 12 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta cần chứng minh Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo giả thiết ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

15 tháng 3

sao MN=PQ <=> vecto MN^2=vecto PQ^2

 

29 tháng 5 2018

Giải bài tập Toán 11 | Giải Toán lớp 11

Tứ diện đều ABCD nên các mặt của tứ diện là các tam giác đều bằng nhau

Ta có: ∆BAD = ∆CAD (c.c.c)

Suy ra hai đường trung tuyến tương ứng bằng nhau: BN = CN

⇒ ΔBNC cân tại N.

Do NM là đường trung tuyến của tam giác cân BNC nên NM đồng thời là đường cao:

⇒ MN ⊥ BC

Chứng minh tương tự MN ⊥ AD

15 tháng 9 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác ABC ta có:

MP // AC và MP = AC/2.

Trong tam giác ACD ta có:

QN // AC và QN = AC/2.

Từ đó suy ra {MP // QN}

⇒ Tứ giác MNPQ là hình bình hành.

Do vậy hai đường chéo MN và PQ cắt nhau tại trung điểm O của mỗi đường.

Tương tự: PR // QS và PR = QS = AB/2. Do đó tứ giác PQRS là hình bình hành.

Suy ra hai đường chéo RS và PQ cắt nhau tại trung điểm O của PQ và OR = OS

Vậy ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song