Giải phương trình f'(x) = g(x) với
a) \(\left\{{}\begin{matrix}f\left(x\right)=sin^43x\\g\left(x\right)=sin6x\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}f\left(x\right)=sin^32x\\g\left(x\right)=4cos2x-5sin4x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}f\left(x\right)=2x^2cos^2\frac{x}{2}\\g\left(x\right)=x-x^2sinx\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}f\left(x\right)=4xcos^2\frac{x}{2}\\g\left(x\right)=8cos\frac{x}{2}-3-2sinx\end{matrix}\right.\)
d/
\(f'\left(x\right)=4cos^2\frac{x}{2}-2x.2cos\frac{x}{2}.sin\frac{x}{2}=2\left(1+cosx\right)-2x.sinx\)
\(f'\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow2+2cosx-2x.sinx=8cos\frac{x}{2}-3-2sinx\)
Chà, có vẻ bạn ghi ko đúng đề, pt này ko giải được.
Chắc \(g\left(x\right)=8cos\frac{x}{2}-3-2x.sinx\) mới đúng chứ nhỉ?
c/
\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)
\(f'\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)
\(\Leftrightarrow2x\left(1+cosx\right)=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)