c) x ∈ BC(12; 5; 8) và 60 ≤ x ≤ 240
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B nằm giữa A và C nên AB+BC=AC
=>AC=12+x
Theo đề, ta có: \(\dfrac{x+12}{x}=\dfrac{5}{2}\)
=>5x=2x+24
hay x=8
a. Ta có : 54 = 2 . 33
12 = 22.3
Do đó ƯCLN ( 54 , 12 ) = 2 .3 = 6 hay x = 6
Vậy x = 6
b. x ∈ BC(8, 9) và x nhỏ nhất
=> x là BCNN(8, 9)
Ta có: 8 = 23
9 = 32
=> BCNN(8, 9) = 23 . 32 = 72
Vậy x = 72.
c. Vì x chia hết cho 12 và 18
=> x ∈ BC(12;18) = {0;36;72;144;288;...}
Mà x < 250 nên x ∈ {0;36;72;144}
d. Vì 15 chia hết cho 2x+1
=> 2x+1 là ước tự nhiên của 15
=> 2x+1 thuộc 1,3,5,15
xét 2x+1=1 => x = 0(t/m)
2x+1=3 => x=1(t/m)
2x+1 =5 => x=2(t/m)
2x+1=15 => x=7(t/m)
Vậy x ={ 0;1;2;7}
a,P=(x+a)(x+b)(x+c)
=) P= x3+(a+b+c)x2+(ab+bc+ca)x+abc
Mà a+b+c=12 , ab+bc+ca=17, abc=60
Nên P= x3+12x2+17x+60
c) x ⋮ 2; x ⋮ 7; x ⋮ 35
⇒ x ∈ BC(2; 7; 35)
Ta có:
2 = 2
7 = 7
35 = 5.7
⇒ BCNN(2; 7; 35) = 2.5.7 = 70
⇒ x ∈ BC(2; 7; 35) = B(70) = {0; 70; 140; 210; ...}
Mà 100 ≤ x ≤ 200
x = 140
b) Do x ∈ BC(21; 35; 99) và x nhỏ nhất, x ≠ 0 nên x = BCNN(21; 35; 99)
Ta có:
21 = 3.7
35 = 5.7
99 = 3².11
⇒ x = BCNN(21; 35; 99) = 3².5.7.11 = 3465
e) Do x nhỏ nhất, x ≠ 0; x ⋮ 12; x ⋮ 15; x ⋮ 20
⇒ x = BCNN(12; 15; 20)
Ta có:
12 = 2².3
15 = 3.5
20 = 2².5
⇒ x = BCNN(12; 15; 20) = 2².3.5 = 60
Bài làm
Ta có: BC = BD + DC
hay 21 = 9 + DC
=> DC = 21 - 9 = 12 ( cm )
Xét tam giác ABC có:
AD là tia phân giác của góc BAC
Theo tính chất đường phân giác có:
\(\frac{BD}{DC}=\frac{AB}{AC}\)
Hay \(\frac{9}{12}=\frac{6}{x}\)
=> \(x=\frac{12.6}{9}=8\)
Vậy x = 8 ( cm )
# Học tốt #
1 ) Nếu \(x=9\Rightarrow10=x+1\)
Thay \(10=x+1\) vào B , ta được :
\(B=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(\Leftrightarrow B=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(\Leftrightarrow B=1\)
2 ) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)
\(=x^3+ax^2+bx^2+abx+x^2c+axc+bxc+abc\)
\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+axc+bcx\right)+abc\)
\(=x^3+\left(a+b+c\right)x^2+x\left(ab+ac+bc\right)+abc\)
\(\left(đpcm\right)\)
:D
Lời giải:
$12=2^2.3$
$5=1.5$
$8=2^3$
$\Rightarrow \text{BCNN(12,5,8)}=2^3.3.5=120$
$x\in \text{BC(12,5,8)}$ nên $x\in \left\{120; 240; 360;...\right\}$
Mà $60\leq x\leq 240$ nên $x\in \left\{120; 240\right\}$
cảm ơn nhiều nha
thanks