giúp mik với đg cần gấp ạ
k hết nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2 + n + 4 chia hết cho n + 1
=> n.n + n + 4 chia hết cho n + 1
=> n(n + 1) + 4 chia hết cho n + 1
Vì n(n + 1) chia hết cho n + 1 nên để n(n + 1) + 4 chia hết cho n + 1 thì 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4)
=> n + 1 thuộc {1;2;4}
Ta có bảng
n + 1 | 1 | 2 | 4 |
n | 0 | 1 | 3 |
Vậy n thuộc {0;1;3}
Ta có: 3n+5⋮n+1.
(3n+3)+2⋮n+1.
3(n+1)+2⋮n+1.
mà 3(n+1)⋮n+1
⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.
Ta lập bảng xét giá trị
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)
TC : 3n-5 -[3.(n+1)]:hết cho n+1
3n-5 -(3n+3) :hết cho n+1
3n- 5 - 3n-3:hết cho n+1
2:hết cho n+1 =≫n+1 thuôc Ư(2)={1;2}
thay n+1lần lượt= 1;2 là ban sẽ ra
Câu 4:
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Câu 1:
\(a,=\dfrac{1}{2}+9\cdot\dfrac{1}{9}-18=\dfrac{1}{2}+1-18=-\dfrac{33}{2}\\ b,=2-1+4\cdot\dfrac{1}{4}+9\cdot\dfrac{1}{9}\cdot9=1+1+9=11\\ c,=-21,3\left(54,6+45,4\right)=-21,3\cdot100=-2130\\ d,B=\left(\dfrac{1}{16}+\dfrac{1}{2}-\dfrac{1}{16}\right):\left(\dfrac{1}{8}-\dfrac{1}{8}+1\right)=\dfrac{1}{2}:1=\dfrac{1}{2}\)
\(\text{Bài 1:a)}25\dfrac{3}{19}.\left(-\dfrac{4}{5}\right)-35\dfrac{3}{19}.\left(-\dfrac{4}{5}\right)\)
\(=\dfrac{478}{19}.\left(-\dfrac{4}{5}\right)-\dfrac{668}{19}.\left(-\dfrac{4}{5}\right)\)
\(=\left(-\dfrac{4}{5}\right).\left(\dfrac{478}{19}-\dfrac{668}{19}\right)\)
\(=\left(-\dfrac{4}{5}\right).\left(\dfrac{-190}{19}\right)\)
\(=\left(-\dfrac{4}{5}\right).\left(-10\right)=8\)
\(\text{b)}5:\left(-\dfrac{5}{2}\right)^2+\dfrac{2}{15}.\sqrt{\dfrac{9}{4}}-\left(-2021\right)^0+0,25\)
\(=5:\dfrac{25}{4}+\dfrac{2}{15}.\dfrac{3}{2}-1+\dfrac{1}{4}\)
\(=\dfrac{4}{5}+\dfrac{1}{5}-1+\dfrac{1}{4}\)
\(=1-1+\dfrac{1}{4}\)
\(=0+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\text{Bài 2:a)}\dfrac{8}{5}-\dfrac{3}{5}:x=0,4\)
\(\dfrac{3}{5}:x=\dfrac{8}{5}-0,4=\dfrac{6}{5}\)
\(x=\dfrac{3}{5}.\dfrac{5}{6}=\dfrac{1}{2}\)
\(\text{b)}\left(3x-\dfrac{1}{2}\right)^2+\dfrac{21}{25}=1\)
\(\left(3x-\dfrac{1}{2}\right)^2\) \(=1-\dfrac{21}{25}=\dfrac{4}{25}=\pm\left(\dfrac{2}{5}\right)^2\)
\(\text{Vậy }3x-\dfrac{1}{2}=\dfrac{2}{5}\)
\(3x\) \(=\dfrac{2}{5}+\dfrac{1}{2}=\dfrac{9}{10}\)
\(x\) \(=\dfrac{9}{10}.\dfrac{1}{3}=\dfrac{3}{10}\)
\(\text{hoặc }3x-\dfrac{1}{2}=\dfrac{-2}{5}\)
\(3x\) \(=\left(\dfrac{-2}{5}\right)+\dfrac{1}{2}=\dfrac{1}{10}\)
\(x\) \(=\dfrac{1}{10}.\dfrac{1}{3}=\dfrac{1}{30}\)
\(\Rightarrow x\in\left\{\dfrac{3}{10};\dfrac{1}{30}\right\}\)
Bài 2:
a: =>3/5:x=6/5
hay x=3/5:6/5=1/2
b: \(\Leftrightarrow\left(3x-\dfrac{1}{2}\right)^2=\dfrac{4}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{1}{2}=\dfrac{2}{5}\\3x-\dfrac{1}{2}=-\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{10}\\x=\dfrac{1}{30}\end{matrix}\right.\)
Bài 4:
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB=CD
Câu 18
Số mol S=8/32=0,25mol
Số nguyên tử S là 0,25.6,022.10^23=1,5055.10^23 nguyên tử
Số nguyên tử Na=2.1,5055.10^23=3,011.10^23 ngtu
Số mol Na là n= 3,11.10^23/(6,022.10^23)=0,5mol
m(Na)=0,5.23=11,5g
Lời giải:
a. Với $n$ nguyên khác -3, để $B$ nguyên thì:
$2n+9\vdots n+3$
$\Rightarrow 2(n+3)+3\vdots n+3$
$\Rightarrow 3\vdots n+3$
$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$
b.
$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$
Để $B_{\max}$ thì $\frac{3}{n+3}$ max
Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất
Tức là $n+3=1$
$\Leftrightarrow n=-2$
c. Để $B$ min thì $\frac{3}{n+3}$ min
Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất
Tức là $n+3=-1$
$\Leftrightarrow n=-4$
Gọi số học sinh giỏi, khá, trung bình lần lượt là \(a,b,c\)(học sinh) \(a,b,c\inℕ^∗\).
Vì khối 7 có \(336\)học sinh nên \(a+b+c=336\).
Vì số học sinh giỏi, khá, trung bình lần lượt tỉ lệ với \(4,5,7\)nên \(\frac{a}{4}=\frac{b}{5}=\frac{c}{7}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{4+5+7}=\frac{336}{16}=21\)
\(\Leftrightarrow\hept{\begin{cases}a=21.4=84\\b=21.5=105\\c=21.7=147\end{cases}}\)