K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2020

a. π < α < \(\frac{3\pi}{2}\) => cosα <0

Ta có: sin2α + cos2α = 1 => cosα = \(\frac{-\sqrt{51}}{10}\) => tanα = \(\frac{7\sqrt{51}}{51}\)

b. 0 < α < \(\frac{\pi}{2}\) => sinα > 0

Ta có: sin2α + cos2α =1 => sinα = \(\frac{3\sqrt{17}}{13}\) => tanα = \(\frac{3\sqrt{17}}{4}\)

c. \(\frac{\pi}{2}< \alpha< \pi\) => cosα <0 ; sinα > 0

Ta có: \(1+tan^2\alpha=\frac{1}{cos^2\alpha}\) => cosα = \(\frac{-7}{\sqrt{274}}\) => sinα = \(\frac{15}{\sqrt{274}}\)

d. \(\frac{3\pi}{2}< \alpha< 2\pi\) => cosα > 0 ; sinα < 0

Ta có: 1+ cot2α = \(\frac{1}{sin^2\alpha}\)=> sinα = \(\frac{-\sqrt{10}}{10}\) => cos\(\alpha\) = \(\frac{3\sqrt{10}}{10}\)

20 tháng 5 2020

Câu d là cosα > 0 chứ???

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì \(0<\alpha <\frac{\pi }{2} \) nên \(\sin \alpha  > 0\). Mặt khác, từ \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) suy ra

\(\sin \alpha  = \sqrt {1 - {{\cos }^2}a}  = \sqrt {1 - \frac{1}{{25}}}  = \frac{{2\sqrt 6 }}{5}\)

Do đó, \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{\frac{1}{5}}}{{\frac{{2\sqrt 6 }}{5}}} = \frac{{\sqrt 6 }}{{12}}\)

b) Vì \(\frac{\pi }{2} < \alpha  < \pi\) nên \(\cos \alpha  < 0\). Mặt khác, từ \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) suy ra

       \(\cos \alpha  = \sqrt {1 - {{\sin }^2}a}  = \sqrt {1 - \frac{4}{9}}  = -\frac{{\sqrt 5 }}{3}\)

Do đó, \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{-\frac{{\sqrt 5 }}{3}}} = -\frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{-\frac{{\sqrt 5 }}{3}}}{{\frac{2}{3}}} = -\frac{{\sqrt 5 }}{2}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

c) Ta có: \(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }}\)

Ta có: \({\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow {\cos ^2}\alpha  = \frac{1}{{{{\tan }^2}\alpha  + 1}} = \frac{1}{6} \Rightarrow \cos \alpha  =  \pm \frac{1}{{\sqrt 6 }}\)

Vì \(\pi  < \alpha  < \frac{{3\pi }}{2} \Rightarrow \sin \alpha  < 0\;\) và \(\,\,\cos \alpha  < 0 \Rightarrow \cos \alpha  = -\frac{1}{{\sqrt 6 }}\)

Ta có: \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha  = \tan \alpha .\cos \alpha  = \sqrt 5 .(-\frac{1}{{\sqrt 6 }}) = -\sqrt {\frac{5}{6}} \)

d) Vì \(\cot \alpha  =  - \frac{1}{{\sqrt 2 }}\;\,\) nên \(\,\,\tan \alpha  = \frac{1}{{\cot \alpha }} =  - \sqrt 2 \)

Ta có: \({\cot ^2}\alpha  + 1 = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow {\sin ^2}\alpha  = \frac{1}{{{{\cot }^2}\alpha  + 1}} = \frac{2}{3} \Rightarrow \sin \alpha  =  \pm \sqrt {\frac{2}{3}} \)

Vì \(\frac{{3\pi }}{2} < \alpha  < 2\pi  \Rightarrow \sin \alpha  < 0 \Rightarrow \sin \alpha  =  - \sqrt {\frac{2}{3}} \)

Ta có: \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} \Rightarrow \cos \alpha  = \cot \alpha .\sin \alpha  = \left( { - \frac{1}{{\sqrt 2 }}} \right).\left( { - \sqrt {\frac{2}{3}} } \right) = \frac{{\sqrt 3 }}{3}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)  Ta có \({\cos ^2}\alpha  + {\sin ^2}\alpha \,\,\, = \,1\)

mà \(\sin \alpha  = \frac{{\sqrt {15} }}{4}\) nên \({\cos ^2}\alpha  + {\left( {\frac{{\sqrt {15} }}{4}} \right)^2}\,\,\, = \,1 \Rightarrow {\cos ^2}\alpha  = \frac{1}{{16}}\)

Lại có \(\frac{\pi }{2} < \alpha  < \pi \) nên \(\cos \alpha  < 0 \Rightarrow \cos \alpha  =  - \frac{1}{4}\)

Khi đó \(\tan \alpha  = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} =  - \sqrt {15} ;\cot \alpha  = \frac{1}{{\tan \alpha }} =  - \frac{1}{{\sqrt {15} }}\)

b)

Ta có \({\cos ^2}\alpha  + {\sin ^2}\alpha \,\,\, = \,1\)

mà \(\cos \alpha  =  - \frac{2}{3}\) nên \({\sin ^2}\alpha  + {\left( {\frac{{ - 2}}{3}} \right)^2}\,\,\, = \,1 \Rightarrow {\sin ^2}\alpha  = \frac{5}{9}\)

Lại có \( - \pi  < \alpha  < 0\) nên \(\sin \alpha  < 0 \Rightarrow \sin \alpha  =  - \frac{{\sqrt 5 }}{3}\)

Khi đó \(\tan \alpha  = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} = \frac{{\sqrt 5 }}{2};\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{2}{{\sqrt 5 }}\)

c)

Ta có \(\tan \alpha  = 3\) nên

\(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{3}\)

\(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \,\,\, = \,1 + {3^2} = 10\,\, \Rightarrow {\cos ^2}\alpha  = \frac{1}{{10}}\)

Mà \({\cos ^2}\alpha  + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\sin ^2}\alpha  = \frac{9}{{10}}\)

Với \( - \pi  < \alpha  < 0\) thì \(\sin \alpha  < 0 \Rightarrow \sin \alpha  =  - \sqrt {\frac{9}{{10}}} \)

Với \( - \pi  < \alpha  <  - \frac{\pi }{2}\) thì \(\cos \alpha  < 0 \Rightarrow \cos \alpha  =  - \sqrt {\frac{1}{{10}}} \)

và  \( - \frac{\pi }{2} \le \alpha  < 0\) thì \(\cos \alpha  > 0 \Rightarrow \cos \alpha  = \sqrt {\frac{1}{{10}}} \)

d)

Ta có \(\cot \alpha  =  - 2\) nên

\(\tan \alpha  = \frac{1}{{\cot \alpha }} =  - \frac{1}{2}\)

\(\frac{1}{{{{\sin }^2}\alpha }} = 1 + co{{\mathop{\rm t}\nolimits} ^2}\alpha \,\,\, = \,1 + {( - 2)^2} = 5\,\, \Rightarrow {\sin ^2}\alpha  = \frac{1}{5}\)

Mà \({\cos ^2}\alpha  + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\cos ^2}\alpha  = \frac{4}{5}\)

Với \(0 < \alpha  < \pi \) thì \(\sin \alpha  > 0 \Rightarrow \sin \alpha  = \sqrt {\frac{1}{5}} \)

Với \(0 < \alpha  < \frac{\pi }{2}\) thì \(\cos \alpha  > 0 \Rightarrow \cos \alpha  = \sqrt {\frac{4}{5}} \)

và  \(\frac{\pi }{2} \le \alpha  < \pi \) thì \(\cos \alpha  < 0 \Rightarrow \cos \alpha  =  - \sqrt {\frac{4}{5}} \)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     \({\cos ^2}\alpha  + {\sin ^2}\alpha  = 1\)

b)     \(\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\)

c)     \(\frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha  + 1\)

d)     \(\frac{1}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha \)

a:

2: pi/2<a<pi

=>sin a>0 và cosa<0

tan a=-2

1+tan^2a=1/cos^2a=1+4=5

=>cos^2a=1/5

=>\(cosa=-\dfrac{1}{\sqrt{5}}\)

\(sina=\sqrt{1-\dfrac{1}{5}}=\dfrac{2}{\sqrt{5}}\)

cot a=1/tan a=-1/2

3: pi<a<3/2pi

=>cosa<0; sin a<0

1+cot^2a=1/sin^2a

=>1/sin^2a=1+9=10

=>sin^2a=1/10

=>\(sina=-\dfrac{1}{\sqrt{10}}\)

\(cosa=-\dfrac{3}{\sqrt{10}}\)

tan a=1:cota=1/3

b;

tan x=-2

=>sin x=-2*cosx

\(A=\dfrac{2\cdot sinx+cosx}{cosx-3sinx}\)

\(=\dfrac{-4cosx+cosx}{cosx+6cosx}=\dfrac{-3}{7}\)

2: tan x=-2 

=>sin x=-2*cosx

\(B=\dfrac{-4cosx+3cosx}{-6cosx-2cosx}=\dfrac{1}{8}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

+) Nửa đường tròn đơn vị: nửa đường tròn tâm O, bán kính R = 1 nằm phía trên trục hoành (H.3.2).

+) Với mỗi góc \(\alpha ({0^o} \le \alpha  \le {180^o})\)có duy nhất điểm \(M({x_0};{y_0})\) trên nửa đường tròn đơn vị nói trên để \(\widehat {xOM} = \alpha .\) Khi đó:

\(\sin \alpha  = {y_0}\) là tung độ của M

\(\cos \alpha  = {x_0}\) là hoành độ của M

\(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{{y_0}}}{{{x_0}}}(\alpha  \ne {90^o})\)

\(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{{x_0}}}{{{y_0}}}(\alpha  \ne {0^o},\alpha  \ne {180^o})\)

15 tháng 4 2017

a) Do 0 < α < nên sinα > 0, tanα > 0, cotα > 0

sinα =

cotα = ; tanα =

b) π < α < nên sinα < 0, cosα < 0, tanα > 0, cotα > 0

cosα = -√(1 - sin2 α) = -√(1 - 0,49) = -√0,51 ≈ -0,7141

tanα ≈ 0,9802; cotα ≈ 1,0202.

c) < α < π nên sinα > 0, cosα < 0, tanα < 0, cotα < 0

cosα = ≈ -0,4229.

sinα =

cotα = -

d) Vì < α < 2π nên sinα < 0, cosα > 0, tanα < 0, cotα < 0

Ta có: tanα =

sinα =

cosα =

24 tháng 9 2023

\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha  \ne {90^o})\)

\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)

\( \Leftrightarrow {\cos ^2}\alpha  = \frac{1}{{10}} \Leftrightarrow \cos \alpha  =  \pm \frac{{\sqrt {10} }}{{10}}\)

Vì \({0^o} < \alpha  < {180^o}\) nên \(\sin \alpha  > 0\).

Mà \(\tan \alpha  = 3 > 0 \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt {10} }}{{10}}\)

Lại có: \(\sin \alpha  = \cos \alpha .\tan \alpha  = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)

\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)