K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2020

\(x^3+3x-5=y\left(x^2+2\right)\Rightarrow y=\frac{x^3+3x-5}{x^2+2}=x+\frac{x-5}{x^2+2}\)

Để y nguyên \(\Rightarrow\frac{x-5}{x^2+2}\) nguyên

Ta có: \(\frac{x-5}{x^2+2}+3=\frac{3x^2+x+1}{x^2+2}=\frac{3\left(x+\frac{1}{6}\right)^2+\frac{11}{12}}{x^2+2}>0\Rightarrow\frac{x-5}{x+2}>-3\)

\(\frac{x-5}{x^2+2}-1=\frac{-x^2+x-7}{x^2+2}=\frac{-\left(x-\frac{1}{2}\right)^2-\frac{27}{4}}{x^2+2}< 0\Rightarrow\frac{x-5}{x^2+2}< 1\)

\(\Rightarrow-3< \frac{x-5}{x^2+2}< 1\Rightarrow\left[{}\begin{matrix}\frac{x-5}{x^2+2}=-2\\\frac{x-5}{x^2+2}=-1\\\frac{x-5}{x^2+2}=0\end{matrix}\right.\) \(\Rightarrow x=5\) \(\Rightarrow y=5\)

Ta có: \(\left|3x-5\right|\ge0\forall x\)

\(\left(2y+5\right)^{20}\ge0\forall y\)

\(\left(4z-3\right)^{206}\ge0\forall z\)

Do đó: \(\left|3x-5\right|+\left(2y+5\right)^{20}+\left(4z-3\right)^{206}\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{3};y=-\dfrac{5}{2};z=\dfrac{3}{4}\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

28 tháng 10 2021

la

28 tháng 10 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)

24 tháng 7 2015

x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15

adtcdtsbn:

x/4=y/6=z/15=x+y+z/4+6+15=50/25=2

suy ra : x/4=2=>x=4.2=8

y/6=2=>y=2.6=12

z/15=2 => z=15.2=30

 

30 tháng 10 2019

Câu hỏi của Trang Đinh Huyền - Toán lớp 7 - Học toán với OnlineMath

12 tháng 10 2021

Sửa đề \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4x-3\right)^{20}\le0\)

Mà \(\left|3x-5\right|\ge0\);\(\left(2y+5\right)^{208}\ge0;\left(4x-3\right)^{20}\ge0\)

Do đó \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)