K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

giúp mk vs mk đang cânf gấp

22 tháng 8 2020

Ta có : Đặt A = ax4y3 + 10xy2 + 4y3 - 2x4y3 - 3xy2 + bx3y3

= (a - 2)x4y3 + 7xy2 + 4y3 + bx3y3

Với a - 2 = 0 => (a - 2)x4y3 = 0 => Đơn thức này không có bậc (tm)

Với a - 2 khác 0 => (a - 2)x4y3 => Đơn thức này có bậc 7 (loại) . Vì theo đề bài  đa thức A có bậc 3

=> a - 2 = 0 => a = 2

Nhận thấy 7x2 ; 4x3 có bậc 3 mà bx3y3 có bậc 6 khi b khác 0 

Khi đó A có bậc 6 (loại) vì theo đề ra A có bậc 3

=> b = 0 để A có bậc 3

Vậy a = 2 ; b = 0

27 tháng 4 2020

\(P=ax^4y^3+10xy^2+4y^3-2x^4y^3-3xy^2+bx^3y^4\)

\(=\left(ax^4y^3-2x^4y^3\right)+bx^3y^4+7xy^2+4y^3\)

\(=\left(a-2\right)x^4y^3+bx^3y^4+7xy^2+4y^3\)

Ta thấy: \(4+3=3+4=7\)

mà P phải có bậc là 3 \(\Rightarrow\hept{\begin{cases}a-2=0\\b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\end{cases}}\)

Vậy \(x=2\)và \(b=0\)

a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)

\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)

\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)

Để H có bậc là 6 thì 6-A=0

=>A=6

b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)

\(=3x^4y^2+3x^2y^2\)

\(=3x^2y^2\left(x^2+1\right)\)

\(x^2+1>1>0\forall x\ne0\)

\(x^2>0\forall x\ne0\)

\(y^2>0\forall y\ne0\)

Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>H luôn dương khi x,y khác 0