K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

viết sai và thiếu đề hết r bn nạ!

a: Sửa đề; AB=8cm

AB^2+AC^2=BC^2

=>ΔABC vuông tại A

b: Xét tứ giác AMCD có

AM//CD

AD//CM

AM=CM

=>AMCD là hình thoi

c: XétΔHAI vuông tại H và ΔABC vuông tại A có

góc HAI=góc ABC

=>ΔHAI đồng dạng với ΔABC

22 tháng 9 2019

) HS tự chứng minh AMBQ là hình chữ nhật (ahi đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)

b) Sử dụng tính chất trực tâm tam giác.

c) Sử dụng tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông để chứng minh

P I = P Q = 1 2 A B .

12 tháng 9 2023

A B C D F G x y H K I J

a/

FB=FC (gt); FD=FG (gt) => BDCG là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

b/

Ax//BC => AH//FB

Fy//AB => FH//AB

=> ABFH là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> AH=FB (cạnh đối hbh); Mà FB=FC => AH=FC

Ta có Ax//BC => AH//FC

=> AFCH là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

=> AF//HC (cạnh đối hbh)

c/

DA=DB (gt)

FB=FC (gt)

=> J là trọng tâm của tg ABC \(\Rightarrow AJ=\dfrac{2}{3}AF\)

\(HK=\dfrac{1}{3}HC\Rightarrow CK=\dfrac{2}{3}HC\)

Ta có AFCH là hbh (cmt) =>AF=HC

=> AJ=CK (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

Ta có

AF//HC (cmt) => AJ//CK

=>AKCJ là hbh 

Nối J với K cắt AC tại I'

=> I'A=I'C (trông hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => I' là trung điểm AC

Mà I cũng là trung điểm AC

\(\Rightarrow I'\equiv I\) => J; I; K thẳng hàng

 

23 tháng 10 2015

- Cậu vẽ hình đi 

29 tháng 10 2023

a,b: Xét ΔPMB và ΔPQA có

\(\widehat{PBM}=\widehat{PAQ}\)

PB=PA

\(\widehat{MPB}=\widehat{QPA}\)

Do đó: ΔPMB=ΔPQA

=>PM=PQ

=>P là trung điểm của MQ

Xét tứ giác AQBM có

P là trung điểm chung của AB và QM

=>AQBM là hình bình hành

=>AM//BQ

=>BQ\(\perp\)AC

Xét tứ giác AQHM có HQ//AM

nên AQHM là hình thang