K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2020

+) Với x = 0 ta có: G= 0 

+) Với x khác 0

G đạt giá trị bé nhất <=> 1/G đạt giá trị lớn nhất 

<=> \(\frac{x^2+5x+1}{x}\) đạt giá trị lớn nhất 

Ta có: \(\frac{x^2+5x+1}{x}=x+5+\frac{1}{x}=\frac{x^2+1}{x}+5\ge\frac{2x}{x}+5=7\)

=> \(\frac{1}{G}\) đạt giá trị bé nhất là 7 

=> G đạt giá trị lớn nhất là 1/7 > 0  khi đó x = 1.

12 tháng 7 2018

Mik sẽ hậu ta ạ

20 tháng 6 2021

Xét A = \(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)

Áp dụng BDT Co-si, ta có:

\(\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{36}{\sqrt{x}-3}}\) = 12

=> A  \(\ge15\)

Dấu "=" xảy ra <=> x = 81

20 tháng 6 2021

`5)A=sqrtx+36/(sqrtx-3)`

`A=sqrtx-3+36/(sqrtx-3)+3`

ÁP dụng bđt cosi ta có:

`sqrtx-3+36/(sqrtx-3)>=2sqrt{36}=12`

`=>A>=12+3=15`

Dấu "=" xảy ra khi `sqrtx-3=36/(sqrtx-3)`

`<=>(sqrtx-3)^2=36`

`<=>sqrtx-3=6`

`<=>sqrtx=9`

`<=>x=81`

Không có Max.

20 tháng 6 2021

\(A=\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)

Theo BĐT Cô Si ta có:

\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\sqrt{x}-3.\dfrac{36}{\sqrt{x}-3}}\)

\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge12\)

\(A\ge12+3\)

\(A\ge15\)

\(Min_A=15\)

Dấu = xảy ra khi và chỉ khi : \(\sqrt{x}-3=\dfrac{36}{\sqrt{x}-3}\)

\(\left(\sqrt{x}-3\right)^2=36\)

\(\sqrt{x}-3=6\)

\(\sqrt{x}=9\)

\(x=81\)

26 tháng 4 2022

đăng câu này lần 2

môn ngữ văn??

26 tháng 4 2022

a lỗi 

19 tháng 8 2023

Tìm giá trị nhỏ nhất của biểu thức:

a) Ta có: 

\(M=2x^2+4x+7\)

\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)

\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)

\(M=2\left(x+1\right)^2+5\)

Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:

\(M=2\left(x+1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra:

\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy: \(M_{min}=5\) khi \(x=-1\)

b) Ta có:

\(N=x^2-x+1\)

\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=" xảy ra: 

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

19 tháng 8 2023

Tìm giá trị lớn nhất của biểu thức

a) Ta có: 

\(E=-4x^2+x-1\)

\(E=-\left(4x^2-x+1\right)\)

\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)

\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)

Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên 

\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)

Dấu "=" xảy ra:

\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)

\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)

b) Ta có:

\(F=5x-3x^2+6\)

\(F=-3x^2+5x-6\)

\(F=-\left(3x^2-5x-6\right)\)

\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)

Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)

Dấu "=" xảy ra:

\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)

Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)

NV
11 tháng 9 2021

Biểu thức này chỉ có GTNN, không có GTLN

11 tháng 9 2021

thầy ơi vô giải dùm e bài kia đc ko ạ🥺

24 tháng 10 2021

A = -x2 + 2x + 7 = -( x2 - 2x + 1 ) + 8 = -( x - 1 )2 + 8 ≤ 8 ∀ x

Dấu "=" xảy ra <=> x = 1 => MinA = 8

24 tháng 10 2021

B = 5x - 3x2 + 6 = -3( x2 - 5/3x + 25/36 ) + 97/12 = -3( x - 5/6 )2 + 97/12 ≤ 97/12 ∀ x

Dấu "=" xảy ra <=> x = 5/6 => MinB = 97/12

25 tháng 7 2016

Bài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1\(\ge\)0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967\(\ge\)0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2\(\le\)0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

26 tháng 7 2016

ài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1$\ge$≥0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967$\ge$≥0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2$\le$≤0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à