Chứng minh: 9n + 2 và 12n + 3 (n ∈ N) là hai số nguyên tố cùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(9n+2,12n+3\right)\).
Suy ra \(\hept{\begin{cases}9n+2⋮d\\12n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(9n+2\right)⋮d\\3\left(12n+3\right)⋮d\end{cases}}\Rightarrow3\left(12n+3\right)-4\left(9n+2\right)=1⋮d\)
Suy ra \(d=1\), do đó ta có đpcm.
Đặt d=(9n+2,12n+3)d=(9n+2,12n+3).
Suy ra \hept{9n+2⋮d12n+3⋮d⇒\hept4(9n+2)⋮d3(12n+3)⋮d⇒3(12n+3)−4(9n+2)=1⋮d\hept{9n+2⋮d12n+3⋮d⇒\hept{4(9n+2)⋮d3(12n+3)⋮d⇒3(12n+3)−4(9n+2)=1⋮d
Suy ra d=1d=1, do đó ta có đpcm.
Gọi d là ước của 9n+2 và 12n+3 nên
\(9n+2⋮d\Rightarrow4\left(9n+2\right)=36n+8⋮d\)
\(12n+3⋮d\Rightarrow3\left(12n+3\right)=36n+9⋮d\)
\(\Rightarrow36n+9-\left(36n+9\right)=1⋮d\Rightarrow d=1\)
=> 9n+2 và 12n+3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC(9n + 2; 12n + 3)
⇒ 9n + 2 ⋮ d ⇒ 36n + 8 ⋮ d
12n + 3 ⋮ d ⇒ 36n + 9 ⋮ d
⇒ (36n + 9) - (36n - 8) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 9n + 2 và 12n + 3 là hai số nguyên tố cùng nhau
Gọi ước chung lớn nhất của 9n + 2 và 12n + 3 là d, ta có:
4( 9n + 2) - 3( 12n + 3 ) = -1 chia hết cho d
=> d thuộc { -1;1}
=> 9n+ 2 và 12n +3 là hai số nguyên tố cùng nhau
Gọi ước chung lớn nhất của 9n + 2 và 12n + 3 là d, ta có:
4( 9n + 2) - 3( 12n + 3 ) = -1 chia hết cho d
=> d thuộc { -1;1}
=> 9n+ 2 và 12n +3 là hai số nguyên tố cùng nhau
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Gọi d là ƯCLN(12n+1 ; 30n+2)
=> 6(12n + 1 ) - 2(30n + 2 ) chia hết cho d
=> 2 chia hết cho d
Mà 12n+1 lẻ
=> d = 1
Vậy ........
Gọi d là ước chung của 12n+1 và 30n+2
\(\Rightarrow\)12n+1 \(⋮\)d và 30n+2\(⋮\)d
\(\Rightarrow\)60n+5\(⋮\)d và 60n+4\(⋮\)d
\(\Rightarrow\)60n+5-60n-4\(⋮\)d
\(\Rightarrow\)1\(⋮\)d \(\Rightarrow\)d=1
vậy 12n+1 và 30n+2 là hai số nguyên tố cùng nhau