Cho 2 số dương x,y thỏa mãn : x^2 + y^2 =8 . Tìm giá trị nhỏ nhất P = căn(x^3+1) + căn(y^3+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)
Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:
$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$
$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$
$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)
Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:
$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$
$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$
$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$
\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Với \(x=0\Leftrightarrow y=0\),
Với \(x,y\ne0\):
\(\left(\sqrt{x^2+1}-x\right)\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{x^2+1}-x\)
\(\Leftrightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)
Tương tự ta cũng có: \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)
suy ra \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)
\(M=10x^4+8y^4-15xy+6x^2+5y^2+2017\)
\(=18x^4+26x^2+2017\ge2017\)
Dấu \(=\)tại \(x=0\Rightarrow y=0\).
Áp dụng BĐT Cô-si, ta có :
\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge3\sqrt[3]{\frac{1}{\sqrt{xyz}}}\)
Mặt khác, ta có : \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=1\)
\(\Rightarrow P\ge3\)
Vậy GTNN của P là 3 khi x = y = z = 1
Cách đơn giản hơn cách của anh Tùng:) sửa nốt là thực dương :V
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{\left(1+1+1\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Xét bđt phụ \(x+y+z\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)với x,y,z > 0 ( cấy ni thì dễ rồi nhân 2 vào cả 2 vế chuyển vế là xong )
\(\Rightarrow P\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)
Dấu "=" xảy ra <=> x=y=z=1
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)