K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2020

Ta có: ( 2n + 1 ; 3n + 1 ) = ( 2n + 1 ; 3n + 1 - 2n - 1 ) = ( 2n + 1; n ) = ( n ; n + 1 ) = ( n ; 1 ) = 1 

=> 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.

23 tháng 12 2022

loading...

6 tháng 2 2023

Gọi \(k\) là \(ƯCLN\left(2n+1,3n+1\right)\)

Khi đó:

\(\left\{{}\begin{matrix}2n+1⋮k\\3n+1⋮k\end{matrix}\right.\)

\(\Rightarrow\left(3n+1\right)-\left(2n+1\right)⋮k\)

\(\Rightarrow1⋮k\) hay \(k=1\) (đpcm)

6 tháng 2 2023

Gọi d là ƯCLN(2n+1;3n+1)

Ta có:2n+1 chia hết cho d

          3n+1 chia hết cho d

Suy ra (3n+1)-(2n+1) chia hết cho d

Suy ra 3n-2n chia hết cho d

Suy ra 1 chia hết cho d

Suy ra 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau

 

27 tháng 10 2023

 gải:

ta gọi x là ƯCLN của 2n+1 và 3n+1

suy ra: (2n+1) chia hết cho x

           (3n+1) chia hết cho x

suy ra: [3(2n+1)-2(3n+1)] chia hết cho x

hay 1 chia hết cho x

suy ra: x e Ư(1)

Ư(1)={1}

do đó x=1

nên ƯCLN(2n+1;3n+1)=1

vì ƯCLN  của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau 

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

31 tháng 10 2024

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

22 tháng 11 2017

Gọi ƯClN (3n+1,4n+1)= d\(\Rightarrow\left(3n+1\right)⋮d\)\(\left(4n+1\right)⋮d\)

\(\Rightarrow4.\left(3n+1\right)⋮d\)\(3.\left(4n+1\right)⋮d\Rightarrow4.\left(3n+1\right)-3.\left(4n+1\right)⋮d\)

\(\Rightarrow12n+4-\left(12n+3\right)⋮d\Rightarrow12n+4-12n-3\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow\)3n+1 và 4n+1 là hai nguyên tố cùng nhau

câu còn ại tương tự

12 tháng 12 2023

Gọi d là ước chung lớn nhất của 2n+1 và 3n+1 ta được:

\(\left\{{}\begin{matrix}\left(2n+1\right)⋮d\\\left(3n+1\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(6n+3\right)⋮d\\\left(6n+2\right)⋮d\end{matrix}\right.\Rightarrow\left[\left(6n+3\right)-\left(6n+2\right)\right]⋮d\)

\(\Rightarrow\left(6n+3-6n-2\right)⋮d\Rightarrow1⋮d\)

Do đó: \(d=\pm1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)

Vậy \(2n+1\) và \(3n+1\) là nguyên tố cùng nhau.

 

12 tháng 12 2023

Gọi d là ƯCLN(2n+1,3n+1)

Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Leftrightarrow1⋮d\Leftrightarrow d=\pm1\)

=> ƯCLN(2n+1,3n+1)=1

=> đpcm

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

NM
23 tháng 11 2020

gọi a là ước chung lớn nhất của 2n+1 và 3n+2

do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1

hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.

b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5

do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1

hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau

13 tháng 12 2024

Địt