Tồn tại hay không 3 số a,b,c thỏa mãn
\(\frac{a}{b^2-ac}=\frac{b}{c^2-ab}=\frac{c}{a^2-bc}=\frac{1}{2019}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{cb}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{a+b+c}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{abc}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
đpcm
\(M=\frac{2019a}{ab+2019a+2019}+\frac{b}{bc+b+2019}+\frac{c}{ca+c+1}\)
\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ca+c+1}\)
\(M=\frac{ca}{1+ca+c}+\frac{1}{c+1+ac}+\frac{c}{ca+c+1}\)
\(M=\frac{ca+a+1}{1+ca+c}\)
\(M=1\)
đã bảo là 3 số thực thì có thể dương, có thể âm, có thể là 0, có thể là phân số...
Từ dk suy ra 1/bc+1/ac+1/ab+1/c+1/b+1/a=6 đặt 1/a=x;1/b=y;1/c=z→x+y+x+xy+yz+xz=6 ta phải cm x2+y2+z2>=3 Ta có:2(x2+y2+z2)>=2(xy+yz+xz) (1) (x-1)2>=0→x2>=2x-1 Tương tự :y2>=2y-1;z2>=2z-1 do đó :x2+y2+z2>=2(x+y+z)-3 (2) cộng vế 1 vs 2 ta có:3(x2+y2+z2)>=2(x+y+z+xy+yz+xz)-3 <=>3(x2+y2+z2)>=2.6-3 <=>x2+y2+z2>=3
Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)
\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)
Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.