K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

Có : x2+4y2>4xy ( BĐT Cô Si)
x2+4z2>4xz
x2+4t2>4tz
x2+4r2>4rx
Cộng vế với vế -> đpcm

10 tháng 7 2020

Đây là lời giải của mình bên đó nhé.

10 tháng 7 2020

Nên ko tặng GP đâu:))

4 tháng 4 2018

ta có: x+y+z=0

=>\(\left(x+y+z\right)^2=0=>x^2+y^2+z^2=-2\left(xy+yz+xz\right)\)

A=\(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\dfrac{x^2+y^2+z^2}{y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2}=\dfrac{x^2+y^2+z^2}{2y^2+2z^2+2x^2-2\left(yz+xy+xz\right)}=\dfrac{x^2+y^2+z^2}{2y^2+2z^2+2x^2+x^2+y^2+z^2}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

vậy.......

chúc bạn học tốt ^ ^

4 tháng 4 2018

Ta có :

\(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

\(\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)}\) (*)

Lại có :

\(x+y+z=0\)

\(\left(x+y+z\right)^2=0\)

\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(x^2+y^2+z^2=-2\left(xy+yz+xz\right)\)

Thay vào biểu thức (*) ta có :

\(\dfrac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(xy+yz+xz\right)}\)

= \(\dfrac{-2\left(xy+yz+xz\right)}{-6\left(xy=yz+xz\right)}\)

= \(\dfrac{1}{3}\)

26 tháng 6 2017

Khá đơn giản!

Ta có: \(x+y+z=0\)

=> \(\left(x+y+z\right)^2=0\)

<=> \(x^2+y^2+z^2+2xy+2yz+2xz=0\) (1)

Thay (1) vào A ta được:

A = \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

= \(\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz+2xz\right)}\)

= \(\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

18 tháng 11 2017

\(M=\dfrac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{xyz-x^3+xyz-y^3+xyz-z^3}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)

\(=\dfrac{-\left(x^3+y^3+z^3-3xyz\right)}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)

\(=\dfrac{-\left(x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^2-3xyz\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\)

\(=\dfrac{-\left[\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\right]}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\)

\(=\dfrac{-\left\{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\right\}}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\)

\(=\dfrac{-\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\)

\(=\dfrac{-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\dfrac{-x-y-z}{2}\)

13 tháng 3 2017

Quy đồng tính bình thường.

\(A=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+2\left(\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{z-x}\right)\)\(=\dfrac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\dfrac{2yz+2xz+2xy-2x^2-2y^2-2z^2}{ }\)

=0

23 tháng 9 2017

\(\dfrac{x^3+y^3+z^3-3xyz}{xy^2+xz\left(2y+z\right)}.\dfrac{x\left(x+y\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\\ =\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)}{xy^2+2xyz+x^2z}.\dfrac{x^2+xy-xy-xy^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\\ =\dfrac{\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{2xy^2+4xyz+2x^2z}.\dfrac{x^2-xy^2}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\\ =\dfrac{\left(x+y+z\right)\left(x^2-xy\right)}{2xy^2+4xy+2x^2z}\)

@@ ko ra nữa

NV
26 tháng 3 2021

Ta sẽ chứng minh:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bình phương 2 vế, BĐT tương đương:

\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)

\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)

\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)

\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)