Bài 3: CMR: a) (n +3)^2 – (n -1)^2 chia hết cho 8 (với n Î Z )
b) n^5 – 5n^3 + 4n chia hết cho 120 (với n thuộcZ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
a: \(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\)
Vì đây là 5 số liên tiếp
nên A chia hết cho 5!
=>A chia hết cho 120
b: \(B=n^2\left(n-3\right)-\left(n-3\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1-3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=\left(2k-2\right)\left(2k+2\right)\cdot2k\)
\(=8k\left(k-1\right)\left(k+1\right)⋮48\)
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
f(n) = n^5-5n^3+4n
=n5-n3-4n3+4n
=n3.(n2-1)-4n.(n2-1)
=n(n2-1)(n2-4)
=n.(n-1)(n+1)(n-2)(n+2)
ta có: n+1 và n là hai số nguyên liên tiếp nên: n.(n-1) chia hết cho 2
n-1;n;n+1 là ba số nguyên liên tiếp nên: n(n-1)(n+1) chia hết cho 3
n-1;n;n+1;n+2 là bốn số nguyên liên tiếp nên: n(n-1)(n+1)(n+2) chia hết cho 4
n-2;n-1;n;n+1;n+2 là năm số nguyên liên tiếp nên n.(n-1)(n+1)(n-2)(n+2) chia hết cho 5
Suy ra: n.(n-1)(n+1)(n-2)(n+2) chia hết cho 2.3.4.5=120
Vậy f(n) chia hết cho 129 với mọi n thuộc Z
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
a: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=4n\left(2n+2\right)⋮8\)