Tìm các số tự nhiên x,y thỏa mãn 1 + \(\sqrt{x+y+3}\) = \(\sqrt{x}\) + \(\sqrt{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt{x}+\sqrt{y}=7\sqrt{19}\)
đặt \(\sqrt{x}=a.\sqrt{19}\);\(\sqrt{y}=a.\sqrt{19}\left(a+b=7\right)\)
Vì \(a,b\in N\)nên \(a\in\hept{ }0;1;2;3;4;5;6;7\)
xét từng TH rồi được kết quả (x;y) là (0;931),(19;684),(76;475),(171,304),(304;171),(475;76),(684;19),(931;0)
Áp dụng bđt AM-GM dạng \(a+b\ge2\sqrt{ab}\)ta có
\(P^2=x+y+2+2\sqrt{\left(x+1\right)\left(y+1\right)}\)
\(\le x+y+2+\left(x+1\right)+\left(y+1\right)=202\)
\(\Rightarrow P\le\sqrt{202}\)
Dấu "=" xảy ra khi \(x=y=\frac{99}{2}\)
Áp dụng bất đẳng thức bu - nhi - a - cốp - ski cho 2 cặp số ( \(\sqrt{x+1},\sqrt{y+1}\)) và ( 1 , 1 )
\(\sqrt{x+1}+\sqrt{y+1}\le\left(x+1+y+1\right).\left(1+1\right)\)= 2.101 = 202
Dấu bằng xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{\sqrt{x+1}}{1}=\frac{\sqrt{y+1}}{1}\\x+y=99\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=\sqrt{y+1}\\x+y=99\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{99}{2}\\y=\frac{99}{2}\end{cases}}\)
Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)
\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm)
\(\sqrt{833}=7\sqrt{17}\)
Cho \(\sqrt{x}=a\sqrt{17}\)và \(\sqrt{y}=b\sqrt{17}\)với \(a+b=7\)
\(\Rightarrow a=1\)thì \(b=6\)tương tự với các kết quả khác sao cho \(a+b=7\)
\(\Rightarrow\sqrt{x}=1\sqrt{17}=\sqrt{17}\Leftrightarrow x=17\) và \(\sqrt{y}=6\sqrt{17}=\sqrt{17\cdot6^2}=\sqrt{612}\Leftrightarrow y=612\)
Làm tương tự với từng kết quả của a và b