Giải phương trình :
\(\frac{x-3}{2017}+\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-3}{2017}+\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\\\Leftrightarrow \left(\frac{x-3}{2017}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-2018}{2}-1\right)+\left(\frac{x-2017}{3}-1\right)\\\Leftrightarrow \frac{x-2020}{2017}+\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\\ \Leftrightarrow\frac{x-2020}{2017}+\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\\ \Leftrightarrow\left(x-2020\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\right)=0\\ \Leftrightarrow x-2020=0\left(Vi\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\ne0\right)\\ \Leftrightarrow x=2020\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2020\right\}\)
Ta có:\(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}>0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)
\(S=\left\{-2015\right\}\)
\(\frac{x-3}{2017}-\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\)
\(\Leftrightarrow\frac{x-3}{2017}-1-\frac{x-2}{2018}-1=\frac{x-2018}{2}-1+\frac{x-2017}{3}-1\)
\(\Leftrightarrow\frac{x-2020}{2017}-\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\)
\(\Leftrightarrow\frac{x-2020}{2017}-\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)
Dễ thấy \(x=2017\)không là nghiệm của phương trình.
Ta có:
\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)
Đặt \(\frac{x-2018}{2017-x}=a\)
\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)
\(\Leftrightarrow24a^2+50a+24=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)
\(\frac{x-1}{2018}+\frac{x-2}{2017}+\frac{x-3}{2016}+\frac{x-2043}{8}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-1+\frac{x-2}{2017}-1+\frac{x-3}{2016}-1\)\(+\frac{x-2043}{8}+3=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-\frac{2018}{2018}+\frac{x-2}{2017}-\frac{2017}{2017}\)\(+\frac{x-3}{2016}-\frac{2016}{2016}+\frac{x-2043}{8}+\frac{24}{8}=0\)
\(\Leftrightarrow\)\(\frac{x-2019}{2018}+\frac{x-2019}{2017}+\frac{x-2019}{2016}\)\(+\frac{x-2019}{8}=0\)
\(\Leftrightarrow\)\(\left(x-2019\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow\)\(x-2019=0\) ( Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\ne0\))
\(\Leftrightarrow\) \(x=2019\)
Vậy phương trình có nghiệm là : \(x=2019\)
buithianhtho làm cách này mà ko có máy tính thì đến bao giờ ?
\(\dfrac{x-3}{2017}+\dfrac{x-2}{2018}+\dfrac{x-1}{2019}=3\)
\(\Leftrightarrow\dfrac{x-3}{2017}-1+\dfrac{x-2}{2018}-1+\dfrac{x-1}{2019}-1=3-1-1-1\)
\(\Leftrightarrow\dfrac{x-3-2017}{2017}+\dfrac{x-2-2018}{2018}+\dfrac{x-1-2019}{2019}=0\)
\(\Leftrightarrow\dfrac{x-2020}{2017}+\dfrac{x-2020}{2018}+\dfrac{x-2020}{2019}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\ne0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=2020\)
Vậy....
\(\frac{x-3}{2017}\)+\(\frac{x-2}{2018}\)+\(\frac{x-1}{2019}\)=3
= 4074342(x-3)+4072323(x-2)+4070306(x-1)=24653843442
=07342x- 12223026+ 4072323x-8144646+4070306x- 4070306= 24653843442
12216971x- 24437978= 24653843442
12216971x=24653843442+24437978
12216971x= 24678281420
x= 2020
Ta có : \(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}+\frac{x+2038}{6}=0\)
=> \(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1+\frac{x+2038}{6}-3=0\)
=> \(\frac{x+2}{2018}+\frac{2018}{2018}+\frac{x+3}{2017}+\frac{2017}{2017}+\frac{x+4}{2016}+\frac{2016}{2016}+\frac{x+2038}{6}-\frac{18}{6}=0\)
=> \(\frac{x+2000}{2018}+\frac{x+2000}{2017}+\frac{x+2000}{2016}+\frac{x+2000}{6}=0\)
=> \(\left(x+2000\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{6}\right)=0\)
=> \(x+2000=0\)
=> \(x=-2000\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{-2000\right\}\)
\(\frac{x-3}{2017}+\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\)
\(\Leftrightarrow\) \(\frac{x-3}{2017}-1+\frac{x-2}{2018}-1=\frac{x-2018}{2}-1+\frac{x-2017}{3}-1\)
\(\Leftrightarrow\) \(\frac{x-2020}{2017}+\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\)
\(\Leftrightarrow\) \(\frac{x-2020}{2017}+\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\)
\(\Leftrightarrow\) (x - 2020)(\(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\)) = 0
\(\Leftrightarrow\) x - 2020 = 0
\(\Leftrightarrow\) x = 2020
Vậy S = {2020}
Chúc bn học tốt!!