Cho phương trình
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1\)1=0
Với điều kiện của m để phương trình có 2 nghiệm x1, x2, gọi S và P lần lượt là tổng và tích của 2 nghiệm của phương trình. Tìm các giá trị của m để S và P là các số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=-2 vào pt:
\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với m= -2 => S= {-2;0}
b) Để phương trình trên có 1 nghiệm x1=2:
<=> 22 -2.(m+1).2-(m+2)=0
<=> 4-4m -4 -m-2=0
<=> -5m=2
<=>m=-2/5
c) ĐK của m để pt trên có nghiệm kép:
\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)
Vô nghiệm.
a:Sửa đề: x^2-(m+1)x+2m-8=0
Khi m=2 thì (1) sẽ là x^2-3x-4=0
=>(x-4)(x+1)=0
=>x=4 hoặc x=-1
b: Δ=(-m-1)^2-4(2m-8)
=m^2+2m+1-8m+32
=m^2-6m+33
=(m-3)^2+24>=24>0
=>(1) luôn có hai nghiệm pb
\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)
=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11
=>(m+1)^2-(2m-8)-2(m+1)+4=11
=>m^2+2m+1-2m+8-2m-2+4=11
=>m^2-2m=0
=>m=0 hoặc m=2
ư365jn5yb