Cho hình thang cân ABCD (AD//BC;BC<AD). Từ A kẻ đường thẳng vuông góc với AD cắt các đường thẳng CB,DC lần lượt tại P và Q.Chứng minh rằng \(\Delta APB\) đồng dạng \(\Delta QPC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: △ABD=△BAC(c−g−c)△ABD=△BAC(c−g−c)
=>AC=BD=>AC=BD
△ACD=△BDC(c−c−c)△ACD=△BDC(c−c−c)
=>ADCˆ=BCDˆ=>ADC^=BCD^
Mà ADCˆ+DABˆ+ABCˆ+BCDˆ=360oADC^+DAB^+ABC^+BCD^=360o
=>2(DABˆ+ADCˆ)=360o=>2(DAB^+ADC^)=360o
=>DABˆ+ADCˆ=180o=>DAB^+ADC^=180o
=>AB//CD=>AB//CD
=>ABCD=>ABCD là hình thang mà có 2 góc ở đáy bằng nhau nên lf thang cân
Bài 4: chắc mấy bạn ở dưới vẽ sai hình :3 -_-
hình vẽ chính xác là ta vẽ được một hình thang cân với AD//BCAD//BC sẽ có được đầy đủ điều kiện đề bài đưa ra
Giải:
△ADB=△DAC△ADB=△DAC (c-c-c)
=>DABˆ=ADCˆ=>DAB^=ADC^
Từ đây chứng minh như câu 1 là =>đpcm )
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)
Chứng minh chi bạn ? Nó là dấu hiệu nhận biết hình thang cân luôn rồi mà ?
a, do CC' là chiều cao \(=>CC'\perp AD\)
theo giả thiết \(AD=10cm=>AD^2=100cm\)
mà \(AC=8cm,DC=6cm=>AC^2+DC^2=100cm\)
\(=>AC^2+CD^2=AD^2\)=>\(\Delta ADC\) vuông tại C(pytago đảo)
áp dụng hệ thức lượng\(CC'.AD=AC.CD=>CC'=\dfrac{8.6}{10}=4,8cm\)
b,theo t/c hình thang cân \(=>\left\{{}\begin{matrix}AB=CD=6cm\\AC=BD=8cm\end{matrix}\right.\)
hạ thêm \(BE\perp AD\)
áp dụng hệ thức lượng\(=>\left\{{}\begin{matrix}C'D=\dfrac{CD^2}{AD}\\AE=\dfrac{AB^2}{AD}\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}C'D=\dfrac{6^2}{10}=3,6cm\\AE=\dfrac{6^2}{10}=3,6cm\end{matrix}\right.\)
\(=>EC'=AD-AE-C'D=10-3,6-3,6=2,8cm\)
ta chứng minh được \(BEC'C\) là hình chữ nhật\(=>EC'=BC=2,8cm\)
\(S\left(ABCD\right)=\dfrac{1}{2}.\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,830,72cm^2\)
đoạn cuối ấy tôi viết vôi quá
\(S\left(ABCD\right)=\dfrac{1}{2}\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,8=30,72cm^2\)