\(\frac{4}{1.2}+\frac{4}{2.3}+...+\frac{4}{2014.2015}\)
Mình chỉ cần đáp án thôi ....( có lòi giải càng tốt )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=4/(1.2)+4/(2.3)+4/(3.4)+......+4/(2014.2015)`
`=4(1/(1.2)+1/(2.3)+1/(3.4)+......+1/(2014.2015))`
`=4(1-1/2+1/2-1/3+1/3-1/4+....+1/2014-1/2015)`
`=4(1-1/2015)`
`=4. 2014/2015`
`=8056/2015`
\(A=\frac{4}{1.2}+\frac{4}{2.3}+...+\frac{4}{2014.2015}\)
\(A=4\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}\right)\)
\(A=4\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(A=4\left(\frac{1}{1}-\frac{1}{2015}\right)\)
\(A=4\left(\frac{2015-1}{2015}\right)\)
\(A=4.\frac{2014}{2015}\)
... BẠN TỰ LÀM NỐT NHÉ!
Ta có: \(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2014.2015}\)
\(=1\left(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{2014.2015}\right)\)
\(=1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=1\left(1-\frac{1}{2015}\right)\)
\(=1\left(\frac{2015}{2015}-\frac{1}{2015}\right)-1\left(\frac{2014}{2015}\right)=\frac{2014}{2015}\)
Vậy.....
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+....+\frac{4}{2014.2015}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2014}-\frac{1}{2015}\)
\(A=\frac{1}{1}-\frac{1}{2015}=\frac{2015}{2015}-\frac{1}{2015}=\frac{2014}{2015}\)
bài này bạn lấy các phân số nhân thêm với 1 rồi bỏ nhân tử chung ra ngoài
\(\frac{5}{x}\)+ \(\frac{4}{x+1}\)= \(\frac{3}{x+2}\)+ \(\frac{2}{x+3}\)
ĐKXĐ: x\(\ne\)0,-1,-2,-3
(=) \(\frac{5}{x}\)\(+1\)+\(\frac{4}{x+1}\)\(+1\)=\(\frac{3}{x+2}\)\(+1\)+\(\frac{2}{x+3}\)\(+1\)
(=) \(\frac{5}{x}\)\(+\)\(\frac{x}{x}\)\(+\)\(\frac{4}{x+1}\)\(+\)\(\frac{x+1}{x+1}\)=\(\frac{3}{x+2}\)\(+\)\(\frac{x+2}{x+2}\)\(+\)\(\frac{2}{x+3}\)\(+\)\(\frac{x+3}{x+3}\)
(=) \(\frac{5+x}{x}\)\(+\)\(\frac{5+x}{x+1}\)=\(\frac{5+x}{x+2}\)\(+\)\(\frac{5+x}{x+3}\)
(=) \(\frac{5+x}{x}\)\(+\)\(\frac{5+x}{x+1}\)\(-\)\(\frac{5+x}{x+2}\)\(-\)\(\frac{5+x}{x+3}\)\(=0\)
(=) \(\left(5+x\right)\)\(\left(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\right)\)\(=0\)
(=) \(\orbr{\begin{cases}5+x=0\\\left(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\right)\end{cases}}=0\)(Loại vì \(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\)> \(0\))
(=) \(x=-5\)
Vậy phương trình có nghiệm là x = -5
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
Ta có: \(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Tương tự các BĐT còn lại rồi nhân theo vế thu được:
\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}.\frac{zx}{\left(z+1\right)\left(x+1\right)}.\frac{xy}{\left(x+1\right)\left(z+1\right)}}\)
\(\Rightarrow P=xyz\le\frac{1}{8}\)
Đẳng thức xảy ra khi x = y = z = 1/2
Vậy...
\(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+...+\frac{4}{2014\cdot2015}\)
\(=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2014\cdot2015}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=4\left(1-\frac{1}{2015}\right)\)
\(=4\cdot\frac{2014}{2015}=\frac{8056}{2015}\)