Bạn ‿༂ℳïɛ‿༂➴•김태형⁀ᶦᵈᵒᶫ
Cho a,b,c >0 và a + b + c = 3.Tìm min
\(sigma\sqrt{84a^2+39ab+54b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét BĐT phụ: \(\sqrt{84a^2+39ab+54b^2}\ge\frac{207a+147b}{2\sqrt{177}}\left(^∗\right)\)
Thật vậy: \(\left(^∗\right)\Leftrightarrow16623\left(a-b\right)^2\ge0\)*đúng*
Tương tự, ta có: \(\sqrt{84b^2+39bc+54c^2}\ge\frac{207b+147c}{2\sqrt{177}}\); \(\sqrt{84c^2+39ca+54a^2}\ge\frac{207c+147a}{2\sqrt{177}}\)
Cộng theo vế của 3 BĐT trên, ta được: \(\sqrt{84a^2+39ab+54b^2}+\sqrt{84b^2+39bc+54c^2}\)
\(+\sqrt{84c^2+39ca+54a^2}\ge\frac{207\left(a+b+c\right)+147\left(a+b+c\right)}{2\sqrt{177}}=3\sqrt{177}\)
Đẳng thức xảy ra khi a = b = c = 1
b/ Đa số các bài bất 2 luôn đưa về dạng (a+b)(a-b)2 ( kinh nghiệm của t)
Ta có \(a^3+b^3\ge ab\left(a+b\right)\)
<=> \(12a^3-ab\left(a+b\right)\ge11a^3-b^3\)
<=> \(\left(3a-b\right)\left(4a^2+ab\right)\ge11a^3-b^3\)
<=> \(3a-b\ge\frac{11a^3-b^3}{4a^2+ab}\)
Hoặc cậu có thể đặt \(\frac{11a^3-b^3}{4a^2+ab}\le ma+nb\)
câu a dùng minkopki
Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)
Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)
BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)
<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)
Áp dụng BĐT Schur ta có:
\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)
Khi đó BĐT
<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)
<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)
<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)
Dấu bằng xảy ra khi a=b=c
Bài 2
Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)
Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)
=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)
Ta có : \(\Sigma\dfrac{ab}{a^2+b^2}=3-\Sigma\dfrac{a^2+b^2-ab}{a^2+b^2}\)
Thấy : \(0< ab\left(a^2+b^2-ab\right)\le\dfrac{\left(a^2+b^2\right)^2}{4}\)
\(\Rightarrow\dfrac{a^2+b^2-ab}{a^2+b^2}\le\dfrac{1}{4}\left(\dfrac{a^2+b^2}{ab}\right)=\dfrac{1}{4}\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
CMTT ; ta có : \(\dfrac{b^2+c^2-bc}{b^2+c^2}\le\dfrac{1}{4}\left(\dfrac{b}{c}+\dfrac{c}{b}\right);\dfrac{c^2+a^2-ac}{a^2+c^2}\le\dfrac{1}{4}\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
Suy ra : \(\Sigma\dfrac{ab}{a^2+b^2}\ge3-\dfrac{1}{4}\left(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{c}{a}\right)=\dfrac{1}{4}\left(\dfrac{a+c}{b}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\right)\)
Thấy : \(\dfrac{a+c}{b}+\dfrac{b+c}{a}+\dfrac{a+b}{c}=\dfrac{\left(a+c\right)ac+\left(b+c\right)bc+ab\left(a+b\right)}{abc}=ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)( do abc = 1 )
Áp dụng BĐT Schur ta được : \(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\le a^3+b^3+c^3+3abc=\Sigma a^3+3\)
Suy ra : \(\Sigma\dfrac{ab}{a^2+b^2}\ge3-\dfrac{1}{4}\left(\Sigma a^3+3\right)=\dfrac{9}{4}-\dfrac{1}{4}\Sigma a^3\cdot\)
Khi đó : \(\Sigma a^3+\Sigma\dfrac{ab}{a^2+b^2}\ge\dfrac{3}{4}\Sigma a^3+\dfrac{9}{4}\ge\dfrac{3}{4}.3+\dfrac{9}{4}=\dfrac{9}{2}\)
" = " <=> a = b = c = 1
Vậy ...
Theo mình nghĩ a,b,c và x,y,z ko có liên quan gì nhau cả bạn ơi :))
áp dụng cô si
\(\sqrt{1+x^2}>=\sqrt{2x}\)
tuuong tu
do do \(A>=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(\sqrt{2}+3\right)\)
\(>=3\sqrt[3]{\sqrt{xyz}}\left(2+\sqrt{3}\right)\)
ap dung co si
\(3=x+y+z>=3\sqrt[3]{xyz}\)
<=>\(\sqrt[3]{xyz}>=1\)
<=>\(3\sqrt[3]{\sqrt{xyz}}>=3\)
do do \(A>=3\left(\sqrt{2}+3\right)\)
dau bang xay ra <=>x=y=z=1
\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)
\(P=\dfrac{a^4}{\sqrt{a^2\left(b^2+3\right)}}+\dfrac{b^4}{\sqrt{b^2\left(c^2+3\right)}}+\dfrac{c^4}{\sqrt{c^2\left(a^2+3\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a^2\left(b^2+3\right)}\le\dfrac{a^2+b^2+3}{2}\\\sqrt{b^2\left(c^2+3\right)}\le\dfrac{b^2+c^2+3}{2}\\\sqrt{c^2\left(a^2+3\right)}\le\dfrac{c^2+a^2+3}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}\le\dfrac{2\left(a^2+b^2+c^2\right)+3}{2}=\dfrac{9}{2}\)
\(\Rightarrow\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\ge\dfrac{2\left(a^2+b^2+c^2\right)^2}{9}=2\)
Vì \(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)
\(\Rightarrow VT\ge2\)
\(\Leftrightarrow\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\ge2\)
\(\Leftrightarrow P\ge2\)
Vậy \(P_{min}=2\)
đặt (với a, b, c > 0). Khi đó phương trình đã cho trở thành:
a = b = c = 2
Suy ra: x = 2013, y = 2014, z = 2015.
Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)
mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac
\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)