K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2020

ta có 1/a+1/b+1/c=1/2

=>1/a+1/b+1/c=1/a+b+c (do a+b+c=2)

=>(1/a-1/a+b+c)+(1/b+1/c)=0

=>b+c/a(a+b+c) +b+c/bc=0

=>(b+c)(1/a(a+b+c) +1/bc)=0

=>(b+c)(bc+a^2 +ab+ac)=0

=>(b+c)(a+b)(a+c)=0

+)Với b+c=0=>a=2

+)với a+b=0=>c=2

+)vói c+a=0=>b=2

      Vậy trong 3 số a,b,c tồn tại một số =2

2 tháng 3 2022

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+bc}{abc}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
-Vậy trong ba số a,b,c tồn tại 2 số đối nhau.

29 tháng 1 2021

Ta có \(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=\frac{1}{a-b-c}\)

=> \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b-c}+\frac{1}{c}\)

=> \(\frac{b-a}{ab}=\frac{a-b}{\left(a-b-c\right)c}\)

Khi b - a = 0

=> (b - a)(a - c)(b + c) = 0 (1)

Khi b - a \(\ne0\)

=> ab = -(a - b - c).c

=> ab = -ac + bc + c2 

=> ab + ac - bc - c2 = 0

=> a(b + c) - c(b + c) = 0

=> (a - c)(b + c) = 0

=> (b - a)(a - c)(b + c) = 0 (2)

Từ (1)(2) => (b - a)(a - c)(b + c) = 0

=> b - a = 0 hoặc a - c = 0 hoặc b + c = 0

=> a = b hoặc a = c hoặc b = -c

Vậy tồn tại 2 số bằng nhau hoặc đối nhau

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Sửa lại đề: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}$.

--------------

Lời giải:

\(\left\{\begin{matrix} a+b+c=2021\\ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\end{matrix}\right.\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0\)

\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\Leftrightarrow (a+b)(b+c)(c+a)=0\)

$\Leftrightarrow (2021-c)(2021-a)(2021-b)=0$

Do đó ít nhất 1 trong 3 số $a,b,c$ có 1 số có giá trị bằng $2021$

NV
16 tháng 11 2019

Giả sử \(\left\{{}\begin{matrix}\left(a+b+c\right)^2\le9ab\\\left(a+b+c\right)^2\le9bc\\\left(a+b+c\right)^2\le9ca\end{matrix}\right.\)

Cộng vế với vế

\(\Rightarrow\left(a+b+c\right)^2\le3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\le0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\)

\(\Leftrightarrow a=b=c\) trái với giả thiết a;b;c đôi một khác nhau

Vậy điều giả sử là sai hay tồn tại một trong 3 số nhỏ hơn \(\left(a+b+c\right)^2\)

13 tháng 7 2017

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow a+b+c-ab-bc-ca=0\)

\(\Leftrightarrow a+b+c-ab-bc-ca+abc-1=0\)

\(\Leftrightarrow\left(a-ac\right)+\left(b-bc\right)+\left(-ab+abc\right)+\left(c-1\right)=0\)

\(\Leftrightarrow-a\left(c-1\right)-b\left(c-1\right)+ab\left(c-1\right)+\left(c-1\right)=0\)

\(\Leftrightarrow\left(-a-b+ab+1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\left[b\left(a-1\right)-\left(a-1\right)\right]\left(c-1\right)\)

\(\Leftrightarrow\left(b-1\right)\left(a-1\right)\left(c-1\right)=0\)

\(\Rightarrow\)\(\left[{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)(đpcm)