CMR voi moi so M=(2a)(2b)(2c)abc chia het cho 3,23.29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(+) với n là số lẻ => n = 2k
Thay vào ta có
n(n+3) = 2k (2k + 3) chia hết cho 2 với mọi n
(+) n là số lẻ => n = 2k + 1
thay vào ta có :
n(n+3) = (2k+ 1 )(2k+ 1 + 3 ) = ( 2k+ 1)( 2k + 4 ) = 2 ( k + 2 )( 2k + 1 ) luôn chia hết cho 2 với mọi n
VẬy n(n+3) luôn luôn chia hết cho 2
Ta có: n(n+3)=n(n+1+2)
=n(n+1)+2n
Ta thấy n(n+1) là 2 số tự nhiên liên tiếp nên luôn tồn tại một số chẵn chia hết cho 2=>n(n+1) chia hết cho 2
mà 2n cũng chia hết cho 2
=> n(n+3) chia hết cho 2 với mọi n tự nhiên
đề sai : đề thật nè Chứng minh rằng m^3+20m chia hết cho 48
m = 2k thì
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5)
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong.
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2
Vậy k(k^2 + 5) chia hết cho 2
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3
Vậy k(k^2 + 5) chia hết cho 3
=>dpcm
tk nha bạn
thank you bạn
(^_^)
\(\left(a+2\right)^2-\left(a-2\right)^2=a^2+4a+4-a^2+4a-4\\ =8a=4.2.a⋮4\:\forall a\in R\)
thank trả lời mấy câu nữa nha mik đứa rồi nhng không ai trả lời