K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2023

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

19 tháng 5 2016

B A C M 5cm

19 tháng 5 2016

áp dụng định lí pitago vào tam giác vuông ABC ta tính đc BC= tự tính nha

Vì MN Song song với AB nên tam giác ABC đồng dạng với tg  BNC ta suy ra đc tỉ số BC/AC=NC/BC

=> NC= BC. AC/ BC= tự thay vào rồi tính nha

Rồi lại áp dụng đl pitago vào tam giác vuông BNC ta tính đc cạnh MN. Ok?

6 tháng 7 2016

Xét △DEC và △BAC có

góc D chung

góc CDE= góc CBA (=90)

Vậy △DEC đồng  dạng △BAC (g_g)

=> \(\frac{CD}{BC}=\frac{EC}{CA}\Rightarrow\frac{CD}{EC}=\frac{BC}{CA}\)

Xét △EAC và △DBC có

góc C chung

\(\frac{CD}{EC}=\frac{BC}{CA}\)(cmt)

Vậy △EAC đồng dạng △BDC (c_g_c)

=> góc CEA = góc CDB

Ta chứng minh được tam giác DHB vuông cân (góc H = 90 ,DH=HB)

=>gócHDB=45 hay là là góc BDA =45 (nó cùng là 1 góc nhưng do cách gọi tên thôi)

Ta có

\(\hept{\begin{cases}gocCEA+gocAEB=180^o\\gocCDB+gocBDA=180^0\end{cases}}\) 

Mà góc CEA = góc CDB

=> góc AEB=góc BDA 

Mà góc BDA=45

=> góc AEB=45

Xét tam giác EBA có

góc E=90

góc EBA=45

=>góc DAB =45

=> tam giác ABE vuông cân tại E

=> BA=BE

T I C K nha 

____________________Chúc bạn học tốt ______________________

6 tháng 7 2016

Các bạn giúp mình với ^^ 

21 tháng 7 2018

a) Xét ΔvABE và ΔvACI, ta có:

AB = AC (ΔABC vuông cân)

∠ABE = ∠ACI (∠ABE = 90° - ∠AEB = 90° - ∠AIC = ∠ACI)

⇒ ΔABE = ΔACI ( cgv-gn )

⇒ BE = CI (cctứ) (đpcm)

b) Ta có: AN // DM // IC (cùng ⊥ BE)

⇒ Tứ giác DMCI là hình thang.

Ta có: AE = AI ( ΔABE = ΔACI )

Mà AE = AD (gt) ⇒ AI = AD

Hình thang DMCI có: AN // DM // IC (cmt); AI = AD (cmt)

⇒ AN là đường trung bình ⇒ NM = NC (đpcm)

21 tháng 7 2018

đáp án đây https://bit.ly/2Lfg9lT nha

22 tháng 9 2018

B D M A N P Q E C

Xét \(\Delta BEC\) , ta có:

N là tđ của BE (gt)

P ----------- BC

=> NP là đtb của \(\Delta BEC\)

=> NP // EC (*)

     NP = \(\frac{EC}{2}\) (**)

Xét \(\Delta DEC\) , ta có:

M là tđ của DE

Q ----------- BC

=> MQ là đtb của \(\Delta DEC\)

=> MQ // EC (***)

     MQ = \(\frac{EC}{2}\) (****)

Từ (*) và (**) => NP // MQ (// EC)

      (***) và (****) => NP = MQ (= \(\frac{EC}{2}\) )

=> Tg NPQM là HBH => NQ = MP

11 tháng 6 2017

MÌNH KO THẤY ĐƯỜNG KO THẤY BÀI GÌ HẾT

 Ta có: 
{ DE song song với AM (gt) => DE/ AM = BD / BM (Định lí Thalès) 
{ DF song song với AM (gt) => DF / AM = CD / CM (Định lí Thalès) 
=> DE / AM + DF / AM = BD / BM + CD / CM 
<=> (DE + DF) / AM = BD / (BC/2) + CD / (BC/2) = (BD + CD) / (BC/2) 
(Vì AM là trung tuyến trong tam giác ABC => M là trung điểm của BC => BM = CM = BC/2) 
<=> (DE + DF) / AM = BC / (BC/2) = 2BC / BC = 2 
<=> DE + DF = 2AM (điều phải chứng minh) 

b) 
- Xét tứ giác ANDM có: AN // DM (gt) và DN // AM (gt) 
=> Tứ giác ANDM là hình bình hành => AN = DM 

- Ta có: AN // BD (gt) 
=> AN / BD = NE / DE (Định lí Thalès) 
<=> NE = (DE . AN) / BD 
- Ta có: DE + DF = 2AM (cm câu a) 
<=> DE + (DE + NE + NF) = 2AM 
<=> 2DE + EF = 2AM 
<=> EF = 2AM - 2DE = 2(AM - DE) 
<=> EF = 2. {[(DE . BM) / BD] - DE} = 2. [(DE . BM - DE . BD) / BD] 
(do DE/ AM = BD / BM => AM = (DE . BM) / BD ) 
<=> EF = 2. [DE . (BM - BD) / BD] 
<=> EF = 2. (DE . DM) / BD = 2 . (DE . AN) / BD (vì AN = DM) 
<=> EF = 2NE 
<=> NE = EF / 2 
=> N là trung điểm của EF 
Vậy NE = NF (điều phải chứng minh)