K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 6 2021

a.

\(\Leftrightarrow x^3+3x^2+x+1\ge mx\) ; \(\forall x\ge0\) (1)

- Với \(x=0\) thỏa mãn

- Với \(x>0\)

(1) \(\Leftrightarrow x^2+3x+1+\dfrac{1}{x}\ge m\)

\(\Leftrightarrow m\le\min\limits_{x>0}\left(x^2+3x+1+\dfrac{1}{x}\right)\)

Xét \(f\left(x\right)=x^2+3x+1+\dfrac{1}{x}\) với \(x>0\)

\(f'\left(x\right)=2x+3-\dfrac{1}{x^2}=0\Leftrightarrow\dfrac{\left(2x-1\right)\left(x+1\right)^2}{x^2}=0\Rightarrow x=\dfrac{1}{2}\)

Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\dfrac{1}{2}\right)=\dfrac{19}{4}\)

\(\Rightarrow m\le\dfrac{19}{4}\)

13 tháng 7 2021

Bpt \(\Leftrightarrow\left(x-1\right)^2+\left|x-1\right|+m-1\ge0;\forall x\)

Đặt \(t=\left|x-1\right|;t\ge0\)

Bpttt: \(t^2+t+m-1\)\(\ge0\) (1)

Để bpt có tập nghiệm là R khi (1) có nghiệm với mọi \(t\ge0\)

Đặt \(f\left(t\right)=t^2+t-1+m;t\ge0\) có đỉnh \(I\left(-\dfrac{1}{2};f\left(-\dfrac{1}{2}\right)\right)\)

\(\Rightarrow\) Hàm \(f\left(t\right)\) đồng biến trên \([0;+\infty)\)

Để \(f\left(t\right)\ge0;\forall t\ge0\)\(\Leftrightarrow\min\limits f\left(t\right)\ge0\)\(\Leftrightarrow f\left(0\right)\ge0\)\(\Leftrightarrow-1+m\ge0\Leftrightarrow m\ge1\)

Vậy...

 

14 tháng 7 2021

😘

NV
21 tháng 2 2021

\(x^2-2x< 0\Leftrightarrow0< x< 2\) \(\Rightarrow D_1=\left(0;2\right)\)

Xét \(f\left(x\right)=x^2+2\left(m-1\right)x+m^2\ge0\) (1)

\(\Delta'=\left(m-1\right)^2-m^2=1-2m\)

- Với \(\Delta'\le0\Leftrightarrow m\ge\dfrac{1}{2}\) thì (1) luôn đúng \(\Leftrightarrow\) hệ có nghiệm

- Với \(m< \dfrac{1}{2}\) \(\Rightarrow\) gọi 2 nghiệm của (1) là \(x_1< x_2\) \(\Rightarrow D_2=(-\infty;x_1]\cup[x_2;+\infty)\)

Để hệ vô nghiệm \(\Leftrightarrow D_1\cap D_2=\varnothing\) \(\Leftrightarrow x_1\le0< 2\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\le0\\4+4\left(m-1\right)+m^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m^2+4m\le0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) Hệ có nghiệm khi \(m\ne0\)

Vậy 

26 tháng 2 2016

Ta có \(2x^2-\left(3m+1\right)x+m^2+m=0\) (a) 

\(\Leftrightarrow\) \(x=m:=x_1\) hoặc \(x=\frac{m+1}{2}:=x_2\)

Bởi vậy \(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\)  (1) có hai nghiệm phân biệt khi và chỉ khi hai nghiệm \(x_1\) , \(x_2\) đó

khác nhau và cùng thỏa mãn ( b) , hay là :

\(\begin{cases}\begin{cases}m\ne\frac{m+1}{2}\\m^2-m^2-3m-1\ge0\end{cases}\\\left(\frac{m+1}{2}\right)^2-m\frac{m+1}{2}-3m-1\ge0\\\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}m\ne1\\m\le-\frac{1}{3}\\m^2+12m+3\le0\end{cases}\)

\(\left(\Rightarrow m\ne1\right)\)

\(\Leftrightarrow\) \(\begin{cases}m\le-\frac{1}{3}\\-6-\sqrt{33}\le m\le-6+\sqrt{33}\end{cases}\)

\(\Leftrightarrow-6-\sqrt{33}\le m\le-\frac{1}{3}\)

Vậy  \(-6-\sqrt{33}\le m\le-\frac{1}{3}\) là các giá trị cần tìm