K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2020

a trước nhé, vì muốn P là số nguyên nên a sẽ chia hết cho a^2-a+1

=>a^2-a+1 - a^2 + a chia hết cho a ( Theo tc chia hết )

=>1 chia hết cho a

=>a thuộc Ư(1) nói cách khác, a=1

12 tháng 5 2020

Sao toán 8 dễ thé nhỉ? Thôi kệ 

20 tháng 5 2022

a) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)

Để A có giá trị là số nguyên thì:

\(4⋮\left(n-2\right)\)

\(\Rightarrow n-2\inƯ\left(4\right)\)

\(\Rightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow n\in\left\{3;1;4;0;6;-2\right\}\)

b)  \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)

Để A là phân số tối giản thì:

\(4⋮̸\left(n-2\right)\)

\(\Rightarrow n-2\notinƯ\left(4\right)\)

\(\Rightarrow n-2\notin\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow n\notin\left\{3;1;4;0;6;-2\right\}\) và \(n\in Z\) (\(n\ne2\))

c) Với \(n>2\) (hoặc \(n< -2\)) thì:

\(A=\dfrac{n+2}{n-2}>0\)

Với \(-2\le n< 2\) thì:

\(A=\dfrac{n+2}{n-2}\le0\)

*\(n=1\Rightarrow A=\dfrac{1+2}{1-2}=-3\)

*\(n=0\Rightarrow A=\dfrac{0+2}{0-2}=-1\)

*\(n=-1\Rightarrow A=\dfrac{-1+2}{-1-2}=-\dfrac{1}{3}\)

*\(n=-2\Rightarrow A=\dfrac{-2+2}{-2-2}=0\)

\(\Rightarrow\)Với \(-2\le n< 2\) thì tại \(n=1\) thì A có GTNN là -3.

Mà với các giá trị nguyên khác (khác 2) của n thì A>0.

\(\Rightarrow A_{min}=-3\), đạt được khi \(n=1\)

 

 

29 tháng 1 2021

a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)

Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)

\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

Ta có :

+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)

+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)

Vậy...

b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)

Ta có : 

\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)

\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n 

Vậy...

29 tháng 1 2021

tm là gì v

16 tháng 8 2021

undefined

a: Để B nguyên thì \(-7⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{-2;-4;4;-10\right\}\)

b: Để A là số nguyên thì \(3x+2⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)

hay \(x\in\left\{-2;-4;14;-8\right\}\)

Để A và B cùng là số nguyên thì \(x\in\left\{-2;-4\right\}\)

5 tháng 5 2021

tìm cả đk giúp mik vs

NV
5 tháng 5 2021

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)