1.cho tam giác ABC vuông A. tia phân giác của góc ABC cắt AC ở M. Kẻ MK vuông BC. ( K thuộc BC) gọi H là giao điểm của tia BA và tia KM.
a.CM:tam giác ABC= tam giác KBM.
b.CM:AM=K và MC>AM.
c.cho AB=9cm, BC=15cm. Tính AC.
d.CM:HC // AK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
=>BA=BD và MA=MD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
c: Xét ΔMKA vuông tại K và ΔMHD vuông tại H có
MA=MD
\(\widehat{KMA}=\widehat{HMD}\)
Do đó: ΔMKA=ΔMHD
=>MK=MH và AK=HD
Xét ΔNKM vuông tại K và ΔNHM vuông tại H có
NM chung
MK=MH
Do đó: ΔNKM=ΔNHM
=>NK=NH và \(\widehat{KMN}=\widehat{HMN}\)
=>MN là phân giác của góc HMK
d: NK+KA=NA
NH+HD=ND
mà NK=NH và KA=HD
nên NA=ND
=>N nằm trên đường trung trực của AD(1)
MA=MD
=>M nằm trên đường trung trực của AD(2)
BA=BD
=>B nằm trên đường trung trực của AD(3)
Từ (1),(2),(3) suy ra B,M,N thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
=>ΔDAF=ΔDEC
=>DF=DC
=>ΔDFC cân tại D
c: Xét ΔBFC có
FE,CAlà đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc CF tại H
=>DH vuông góc CF tại H
mà ΔDFC cân tại D
nên H là trung điểm của FC
Xét ΔKFC có
CD là trung tuyến
CI=2/3CD
Do đó: I là trọng tâm
mà H là trung điểm của CF
nên K,I,H thẳng hàng
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó:ΔBAM=ΔBDM
Suy ra:BA=BD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
a, Xét tam giác ABM và tam giác KBM có:
góc ABM = góc MBC ( vì BM là tia phân giác của góc ABC )
BM cạnh chung
góc BAM = góc BKM ( =90°)
=> tam giác ABM = tam giác KBM ( cạnh huyền- góc nhọn )
b, * AM = KM:
Vì tam giác ABM = tam giác KBM ( câu a )
=> AM = KM ( 2 cạnh tương ứng )
* MC > AM:
Vì tia phân giác góc ABC cắt AC ở M => điểm A, điểm M, điểm c cùng nằm trên một đoạn thẳng.
Ta có : AM + MC = AC
=> MC = AC - AM
=> MC > AM
d, tam giác ABC vuông tại A
=> BC bình = AC bình + AC bình
=> 15 bình = 9 bình + AC bình
=> 225 = 81 + AC bình
=> AC bình = 225 - 81
=> AC bình = 144
=> AC = 12 cm.