Giải phương trình: \(\sqrt{x+3}x^4=2x^4-2008x+2008\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải phương trình:
- Nếu \(x\ge1\)phương trình trở thành : \(x^2-3x+2=x-1\Leftrightarrow x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}TM}\)
- Nếu \(x< 1\)\(\Rightarrow x^2-3x+2=1-x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1L\)VẬY NGHIỆM PHƯƠNG TRÌNH LÀ : x=1 hoặc x=3
\(x^4+2008x^2+2007x+2008\)
\(=x\left[x\left(x^2+2008\right)+2007\right]+2008\)
\(=\left[\left(x-1\right)x+2008\right]\left(x^2+x+1\right)\)
\(=\left(x^2-x+2008\right)\left(x^2+x+1\right)\)
~(‾▿‾~)
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
ĐKXĐ: \(x\ge\dfrac{3}{2}\).
PT đã cho tương đương:
\(\dfrac{x-4}{\sqrt{2x-3}+\sqrt{x+1}}=x-4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\Leftrightarrow x=4\left(TMĐK\right)\\\sqrt{2x-3}+\sqrt{x+1}=1\left(1\right)\end{matrix}\right.\).
Ta có \(\left(1\right)\Leftrightarrow2x-3+x+1+2\sqrt{\left(2x-3\right)\left(x+1\right)}=1\)
\(\Leftrightarrow2\sqrt{\left(2x-3\right)\left(x+1\right)}=3-3x\).
Do đó 3 - 3x \(\ge0\Leftrightarrow x\le1\) (trái với đkxđ).
Suy ra (1) vô nghiệm.
Vậy ncpt là x = 4.
\(\sqrt{x+3}+\sqrt{2x-1}=4-x\)(1)
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow\sqrt{x+3}-2+\sqrt{2x-1}-1+x-1=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x+3}+2}+\dfrac{2\left(x-1\right)}{\sqrt{2x-1}+1}+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x+3}+2}+\dfrac{2}{\sqrt{2x-1}+1}+1\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\dfrac{1}{\sqrt{x+3}+2}+\dfrac{2}{\sqrt{2x-1}+1}+1\)>0)
\(\Leftrightarrow x=1\)(thỏa mãn)
Vậy phương trình có nghiệm là x=1
PT: \(\sqrt{x+3}x^4=2x^4-2008x+2008\)
DK xác định : \(x+3\ge0\Leftrightarrow x\ge-3\)(**)
PT đã cho tương đương:
\(x^4\left(\sqrt{x+3}-2\right)+2008x=2008\)(***)
Nếu :\(x>1\) thì \(x+3>4\Rightarrow x^4\left(\sqrt{x+3}-2\right)+2008x>2008\)
Nếu \(-3\le x\le1\)thì\(0\le x+3< 4\Rightarrow\sqrt{x+3}-2< 0\)và \(x^4\ge0\)
\(\Rightarrow x^4\left(\sqrt{x+3}-2\right)\le0\) Mặt khác : \(2008x< 2008\)
\(\Rightarrow x^4\left(\sqrt{x+3}-2\right)+2008x< 2008\)
* \(x=1\) thỏa mãn (***)
Vậy (***) có nghiệm duy nhất x= 1
KL: Nghiệm của pt đã cho là : x = 1