K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

Nguyễn Khắc Vinh ko biết gì đâu! chỉ toàn trả lời vậy xin l-i-k-e thôi ak

18 tháng 12 2015

bạn ghi gì thế,mình bảo chứng minh mà

24 tháng 2 2021

hình tự vẽ, c,d tự làm tiếp, bài này đơn giản nha.

a/ Xét ΔABD và ΔEBD vuông tại A và E có:

 BD chung;  AB = EB; góc A=E=90o

=> ΔABD = ΔEBD (...)

=> góc ABD = góc EBD

=> BD là phân giác của góc ABC

b,xét tam giác BEK vuông tại Evà tam giác BACvuông tại E , có BE=BA, góc KBC chung

=>tam giac BEK= tam giac BAC (ch-gn)

 

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

BA=BE(gt)

Do đó: ΔABD=ΔEBD(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{ABD}=\widehat{EBD}\)(hai góc tương ứng)

\(\Leftrightarrow\widehat{ABD}=\widehat{CBD}\)

mà tia BD nằm giữa hai tia BA,BC

nên BD là tia phân giác của \(\widehat{ABC}\)(đpcm)

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

b: Sửa đề: AF=EC

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó;ΔDAF=ΔDEC

=>AF=EC

c: Sửa đề: CM AE//CF

Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF
d: Sửa đề: I là trung điểm của FC

Ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(4)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(5)

Từ (3),(4),(5) suy ra B,D,I thẳng hàng

23 tháng 1

Help me

3 tháng 11 2023

loading... a) Xét ∆ABD và ∆EBD có:

AB = BE (gt)

∠ABD = ∠EBD (BD là tia phân giác của ABC)

BD là cạnh chung

⇒ ∆ABD = ∆EBD (c-g-c)

b) Do ∆ABD = ∆EBD (cmt)

⇒ AD = ED (hai cạnh tương ứng)

Lại do ∆ABD = ∆EBD (cmt)

⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)

⇒ ∠DAF = ∠DEC = 90⁰

Xét hai tam giác vuông: ∆DAF và ∆DEC có:

AD = ED (cmt)

∠ADF = ∠EDC (đối đỉnh)

⇒ ∆DAF = ∆DEC (cạnh góc vuông - góc nhọn kề)

⇒ AF = EC (hai cạnh tương ứng)

c) ∆BAE có:

AB = BE (gt)

⇒ ∆BAE cân tại B

⇒ ∠BEA = ∠BAE = (180⁰ - ∠ABC) : 2  (1)

Do AF = EC (cmt)

AB = BE (gt)

⇒ AF + AB = EC + BE

⇒ BF = BC

⇒ ∆BFC cân tại B

⇒ ∠BCF = ∠BFC = (180⁰ - ∠ABC) : 2  (2)

Từ (1) và (2) suy ra:

∠BEA = ∠BCF

Mà ∠BEA và ∠BCF là hai góc đồng vị

⇒ AE // CF

20 tháng 11 2021

Giúp mình mọi người ơi!khocroi

27 tháng 2 2020

a, xét tam giác ABC và tam giác DBE có : góc B chung

AB = BD (Gt)

góc BAC = góc BDE = 90

=> tam giác ABC = tam giác DBE (cgv-gnk)

b, xét tam giác ABH và tam giác DBH có : BH chung

AB = BD (Gt)

góc HAB = góc HDB = 90 

=> tam giác ABH = tam giác DBH (ch-cgv)

=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD

=> BH là pg của góc ABC (đn)

c, AB = BD (gt) có BD = 6 (gt)

=> AB = 6 

BD + DC = BC 

BD = 6; CD = 4

=> BC =10

tam giác ABC vuông tại A (Gt)

=> BC^2 = AB^2 + AC^2

=> AC^2 = 10^2 - 6^2

=> AC^2 = 64

=> AC = 8 do AC > 0

13 tháng 12 2021

undefined