K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2020

a) Xét ΔABDvàΔACEcó

AB = AC (gt)

ADBˆ=AECˆ=90

Aˆ(chung)

Do đó: ΔABD=ΔACE(cạnh huyền −góc nhọn)

=>EC=AB(2 cạnh tương ứng)

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi

26 tháng 1 2016

a) Xét 2 tam giác vuông BEC và tam giác CDB có BC chung, góc ABC=góc ACB

         Nên tam giác BEC = tam giác CDB

    Nên BD=CE( 2 cạnh tương ứng)

b)   Theo câu a ta có tam giác BEC=tam giác CDB

  Nên góc ECB=góc DBC( 2 góc tương ứng

Nên tam giác BIC cân tại I

d) Ta có DC=3cm, BC=5cm.

 Áp dụng định lí PI ta go ta có BD^2+ DC^2=BC^2

                                          ---> BD^2+ 9=25

                                  ---------------> BD=5cm

  Mà BD= EC

   Nên EC=5cm

   Tính AB thì c tương tự nhé bạn

 

a: BD=4cm

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra:BD=CE

c: Xét ΔABC có 

BD là đường cao

CE là đường cao

BD cắt CE tại I

Do đó: I là trực tâm của ΔABC

Suy ra: AI\(\perp\)BC

=>AH vuông góc với BC tại H

mà ΔACB cân tại A

nên AH vuông góc với BC tại trung điểm của BC

6 tháng 3 2022

Xin lỗi nhưng em mới đến phần ôn tập tam giác là cùng ạ 

 Vì \(\Delta ABC\) cân tại A nên AB=AC (đ/n) và \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta EBC\)​  và \(\Delta DCB\)​  có : 

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

\(\widehat{BEC}=\widehat{CDB}\) (=90o)

=> \(\Delta EBC\)=\(\Delta DCB\)(cgv-gnk)

=> BD=CE( cctư) (đpcm)

b) Vì \(\Delta EBC\)=\(\Delta DCB\)nên \(\widehat{IBC}=\widehat{ICB}\)(cgtư)

Xét\(\Delta IBC\)Có :\(\widehat{IBC}=\widehat{ICB}\)=> \(\Delta IBC\)cân=> IB=IC(đ/n)

c) Gọi giao điểm của AI và BC là O

Vì \(\widehat{ABC}=\widehat{ACB}\) và  \(\widehat{IBC}=\widehat{ICB}\) nên \(\widehat{ABI}=\widehat{ACI}\)

Xét  \(\Delta ABI\)​  và \(\Delta ACI\)​  có : 

AB=AC

\(\widehat{ABI}=\widehat{ACI}\)

IB=IC

=> \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)

=> \(\widehat{BAI}=\widehat{CAI}\left(cgtư\right)\)

Xét  \(\Delta ABO\)​  và \(\Delta ACO\)​  có : 

AB=AC

\(\widehat{ABO}=\widehat{ACO}\)

\(\widehat{BAO}=\widehat{CAO}\)

=> \(\Delta ABO=\Delta ACO\left(c.g.c\right)\)

=> \(\widehat{BOA}=\widehat{COA}\left(cgtư\right)\)

mà \(\widehat{BOA}+\widehat{COA}=180^o\)

=> \(\widehat{BOA}=\widehat{COA}\left(=90^o\right)\)

hay AI\(\perp\)BC (đpcm)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

6 tháng 2 2018

Bài 1:

Áp dụng tính chất đường phân giác của tam giác ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)

\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)

Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)

\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)

Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)

b)\(\text{Ta có:}\)

\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)

\(\Rightarrow AE=8cm,EC=10cm\)

5 tháng 2 2018

bn ơi bài 1 ý a)  chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE và AD=AE

b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có 

BC chung

EB=DC

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{HBC}=\widehat{HCB}\)

hay ΔHBC cân tại H

c: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AH là đường trung trực của BC

15 tháng 3 2023

Có chỗ nào không hiểu thì hỏi b nhé

loading...