Tập nghiệm của phương trình (x + 14)3 - (x + 12)3 = 1352 là:
A. 2 B. {-28; 2} C. 2 và -28 D. {2; 28}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập nghiệm của phương trình (x + 14)3 - (x + 12)3 = 1352 là:
A. 2 B. {-28; 2} C. 2 và -28 D. {2; 28}
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)
\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)
\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)
\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)
\(\Leftrightarrow VT\le2g\left(x\right)\)
Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)
\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)
Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)
Ta có:
\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)
\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy tập nghiệm của pt đã cho có đúng 1 phần tử
Giải phương trình
a, x2 - (x-3)(3x+1) = 9
\(\Leftrightarrow\) x2 - 3x2 + 8x +3 = 9
\(\Leftrightarrow\) -2x2 + 8x - 6 = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b, (x+14)3 - (x+12)3 =1352
\(\Leftrightarrow\) (x+14-x-12)[(x+14)2 + (x+14)(x+12) + (x+12)2 ] = 1352
\(\Leftrightarrow\) 6(x2 + 28x + 196 + x2 + 26x + 168 + x2 +24x +144) =1352
\(\Leftrightarrow\) 18x2 +468x + 3048 = 1352
Pt nghiệm vô tỉ
a) \(x^2-\left(x-3\right)\left(3x+1\right)=9\)
\(\Leftrightarrow x^2-9-\left(x-3\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-3x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của pt x = 3 hoặc x = 1
Ta có: \({x^2} + x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\end{array} \right.\)
\( \Rightarrow A = \{ 1; - 2\} \)
Ta có: \(2{x^2} + x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{2}\\x = - 2\end{array} \right.\)
\( \Rightarrow B = \left\{ {\frac{3}{2}; - 2} \right\}\)
Vậy \(C = A \cap B = \{ - 2\} \).
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
Đúng 100% nhé!!!
+) Cách 1: Em thay x= 2; 28 ; -28 vào phương trình xem cái nào là nghiệm
=> Đáp án cần chọn
+) Cách 2: ( Cách em nên học )
Đăt \(t=x+\frac{14+12}{2}=x+13\)
Ta có phương trình: \(\left(t+1\right)^3-\left(t-1\right)^3=1352\)
<=> \(\left(t^3+3t^2+3t+1\right)-\left(t^3-3t^2+3t-1\right)=1352\)
<=> \(6t^2+2=1352\)
<=> \(t^2=225\) <=> t = 15 hoặc t = - 15
+) Với t = 15
ta có: 15 = x + 13 <=> x = 2
+) Với t = - 15
ta có: -15 = x + 13 <=> x = -28
Vậy S = { 2; -28 }
Vậy là đáp án B